国产超薄丝袜足底脚交国产_少妇愉情理伦片丰满丰满_一区二区三区中文人妻制服_久久久久88色偷偷免费_色婷婷久久久swag精品

首頁 > 其他百科 > 

三角形余弦定理公式及證明方法

2023-01-10   來源:萬能知識網(wǎng)

三角形余弦定理公式及證明方法

余弦定理,是描述三角形中三邊長度與一個角的余弦值關(guān)系的數(shù)學(xué)定理。是勾股定理在一般三角形情形下的推廣。下面是小編為大家精心推薦三角形余弦定理的相關(guān)內(nèi)容,希望能夠?qū)δ兴鶐椭?/p>

三角形余弦定理上的定義

三角形余弦定理是揭示三角形邊角關(guān)系的重要定理,直接運用它可解決一類已知三角形兩邊及夾角求第三邊或者是已知三個邊求角的問題,若對余弦定理加以變形并適當(dāng)移于其它知識,則使用起來更為方便、靈活。直角三角形的一個銳角的鄰邊和斜邊的比值叫這個銳角的`余弦值。


(資料圖片)

三角形余弦定理的公式

對于邊長為a、b、c而相應(yīng)角為A、B、C的三角形,有:

a2=b2+c2-bc·cosA

b2=a2+c2-ac·cosB

c2=a2+b2-ab·cosC

也可表示為:

cosC=(a2+b2-c2)/ab

cosB=(a2+c2-b2)/ac

cosA=(c2+b2-a2)/bc

這個定理也可以通過把三角形分為兩個直角三角形來證明。

如果這個角不是兩條邊的夾角,那么三角形可能不是唯一的(邊-邊-角)。要小心余弦定理的這種歧義情況。

三角形余弦定理的證明

平面向量證法(覺得這個方法不是很好,平面的向量的公式a·b=|a||b|Cosθ本來還是由余弦定理得出來的,怎么又能反過來證明余弦定理)∵如圖,有a+b=c(平行四邊形定則:兩個鄰邊之間的對角線代表兩個鄰邊大小)

∴c·c=(a+b)·(a+b)

∴c2=a·a+2a·b+b·b∴c2=a2+b2+2|a||b|Cos(π-θ)

(以上粗體字符表示向量)

又∵Cos(π-θ)=-Cosθ

∴c2=a2+b2-2|a||b|Cosθ(注意:這里用到了三角函數(shù)公式)

再拆開,得c2=a2+b2-2abcosC

即cosC=(a2+b2-c2)/2*a*b

同理可證其他,而下面的cosC=(c2-b2-a2)/2ab就是將cosC移到左邊表示一下。

平面幾何證法

在任意△ABC中

做AD⊥BC.

∠C所對的邊為c,∠B所對的邊為b,∠A所對的邊為a

則有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

根據(jù)勾股定理可得:

AC2=AD2+DC2

b2=(sinBc)2+(a-cosBc)2

b2=(sinB*c)2+a2-2accosB+(cosB)2c2

b2=(sinB2+cosB2)c2-2accosB+a2

b2=c2+a2-2accosB

詞條內(nèi)容僅供參考,如果您需要解決具體問題
(尤其在法律、醫(yī)學(xué)等領(lǐng)域),建議您咨詢相關(guān)領(lǐng)域?qū)I(yè)人士。

推薦詞條