国产超薄丝袜足底脚交国产_少妇愉情理伦片丰满丰满_一区二区三区中文人妻制服_久久久久88色偷偷免费_色婷婷久久久swag精品

首頁 > 職業(yè)資格  > 

《解一元一次方程》數(shù)學教案

2023-05-02   來源:萬能知識網(wǎng)

《解一元一次方程》數(shù)學教案(通用8篇)


(資料圖片)

作為一位杰出的老師,往往需要進行教案編寫工作,編寫教案有利于我們科學、合理地支配課堂時間。如何把教案做到重點突出呢?下面是小編整理的《解一元一次方程》數(shù)學教案,希望能夠幫助到大家。

《解一元一次方程》數(shù)學教案 篇1

一、目標:

知識目標:能熟練地求解數(shù)字系數(shù)的一元一次方程( 不含去括號、去分母)。

過程方法目標:經(jīng)歷和體會解一元一次方程中“轉(zhuǎn)化”的思想方法。

情感態(tài)度目標:在數(shù)學活動中獲得成功的喜悅,增強自信心和意志力,激發(fā)學習興趣。

二、重難點:

重點:學會解一元一次方程

難點:移項

三、學情分析:

知識背景:學生已學過用等式的性質(zhì)來解一元一次方程。

能力背景:能比較熟練地用等式的性質(zhì)來解一元一次方程。

預測目標:能熟練地用移項的方法來解一元一次方 程。

四、教學過程:

(一)創(chuàng)設情景

一頭半歲藍鯨的體 重是22t,90天后的體重是30.1t,藍鯨的體重平均每天增加多少?

(二)實踐探索,揭示新知

1.例2.解方程: 看誰算得又快:

解:方程的兩邊同時加上 得 解: 6x ? 2=10

移項得 6x =10+2

即 合并同類項得

化系數(shù)為1得

大家看一下有什么規(guī)律可尋?可以討論

2 .移項的概念: 根據(jù)等式的基本性質(zhì)方程中的某些項改變符號后,可以從方程的一邊移到另一邊 ,這樣的 變形叫做移項。

看誰做得又快又準確!千萬不要忘記移項要變號。

3.解方程:3x+3 =12,

4.例3解方程: 例4解方程 :

2x=5x-21 x- 3=4-

5.觀察并思考:

①移項有什么特點?

②移項后的化簡包括哪些

(三)嘗試應用 ,反饋矯正

1.下列解方程對嗎?

(1)3x+5=4 7=x-5

解: 3x+ 5 =4 解:7=x-5

移項得: 3x =4+5 移項得:-x= 5+7

合并同類項得 3x =9 合并同類項得 -x= 12

化系數(shù)為1得 x =3 化系數(shù)為1得 x = -12

2解方程

(1). 10x+1=9 (2) 2—3x =4-2x;

(四)歸納小結(jié)

1.今天學習了什么?有什么新的簡便的寫法?

2.要注意什么?

3. 解方程的 一般步驟是什么?

4.. (1) 移項實際上 是對方程兩邊進行 , 使用的是

(2)系數(shù) 化為 1 實際上是對方程兩邊進行 , 使用的是 。

(3)移項的作用是什么?

(五)作業(yè)

1.課堂作業(yè):課本習題4.2第二題

2.家作:評價手冊4.2第二課時

《解一元一次方程》數(shù)學教案 篇2

知識技能

會通過“移項”變形求解“ax+b=cx+d”類型的一元一次方程。

數(shù)學思考

1.經(jīng)歷探索具體問題中的數(shù)量關(guān)系過程,體會一元一次方程是刻畫實際問題的有效數(shù)學模型。進一步發(fā)展符號意識。

2.通過一元一次方程的學習,體會方程模型思想和化歸思想。

解決問題

能在具體情境中從數(shù)學角度和方法解決問題,發(fā)展應用意識。

經(jīng)歷從不同角度尋求分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性。

情感態(tài)度

經(jīng)歷觀察、實驗計算、交流等活動,激發(fā)求知欲,體驗探究發(fā)現(xiàn)的快樂。

教學重點

建立方程解決實際問題,會通過移項解 “ax+b=cx+d”類型的一元一次方程。

教學難點

分析實際問題中的相等關(guān)系,列出方程。

教學過程

活動一 知識回顧

解下列方程:

1. 3x+1=4

2. x-2=3

3. 2x+0.5x=-10

4. 3x-7x=2

提問:解這些方程時,方程的解一般化成什么形式?這些題你采用了那些變形或運算?

教師:前面我們學習了簡單的一元一次方程的解法,下面請大家解下列方程。

出示問題(幻燈片)。

學生:獨立完成,板演2、4題,板演同學講解所用到的變形或運算,共同講評。

教師提問:(略)

教師追問:變形的依據(jù)是什么?

學生獨立思考、回答交流。

本次活動中教師關(guān)注:

(1)學生能否準確理解運用等式性質(zhì)和合并同列項求解方程。

(2)學生對解一元一次方程的變形方向(化成x=a的形式)的理解。

通過這個環(huán)節(jié),引導學生回顧利用等式性質(zhì)和合并同類項對方程進行變形,再現(xiàn)等式兩邊同時加上(或減去)同一個數(shù)、兩邊同時乘以(除以,不為0)同一個數(shù)、合并同類項等運算,為繼續(xù)學習做好鋪墊。

活動二 問題探究

問題2:把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少學生?

教師:出示問題(投影片)

提問:在這個問題中,你知道了什么?根據(jù)現(xiàn)有經(jīng)驗你打算怎么做?

(學生嘗試提問)

學生:讀題,審題,獨立思考,討論交流。

1.找出問題中的已知數(shù)和已知條件。(獨立回答)

2.設未知數(shù):設這個班有x名學生。

3.列代數(shù)式:x參與運算,探索運算關(guān)系,表示相關(guān)量。(討論、回答、交流)

4.找相等關(guān)系:

這批書的總數(shù)是一個定值,表示它的兩個等式相等.(學生回答,教師追問)

5.列方程:3x+20=4x-25(1)

總結(jié)提問:通過列方程解決實際問題分析時,要經(jīng)歷那些步驟?書寫時呢?

教師提問1:這個方程與我們前面解過的方程有什么不同?

學生討論后發(fā)現(xiàn):方程的兩邊都有含x的項(3x與4x)和不含字母的常數(shù)項(20與-25).

教師提問2:怎樣才能使它向x=a的形式轉(zhuǎn)化呢?

學生思考、探索:為使方程的右邊沒有含x的項,等號兩邊同減去4x,為使方程的左邊沒有常數(shù)項,等號兩邊同減去20.

3x-4x=-25-20(2)

教師提問3:以上變形依據(jù)是什么?

學生回答:等式的性質(zhì)1。

歸納:像上面那樣把等式一邊的某項變號后移到另一邊,叫做移項。

師生共同完成解答過程。

設問4:以上解方程中“移項”起了什么作用?

學生討論、回答,師生共同整理:

通過移項,含未知數(shù)的項與常數(shù)項分別位于方程左右兩邊,使方程更接近于x=a的形式。

教師提問5:解這個方程,我們經(jīng)歷了那些步驟?列方程時找了怎樣的相等關(guān)系?

學生思考回答。

教師關(guān)注:

(1)學生對列方程解決實際問題的一般步驟:設未知數(shù),列代數(shù)式,列方程,是否清楚?

在參與觀察、比較、嘗試、交流等數(shù)學活動中,體驗探究發(fā)現(xiàn)成功的快樂。

活動三 解法運用

例2解方程

3x+7=32-2x

教師:出示問題

提問:解這個方程時,第一步我們先干什么?

學生講解,獨立完成,板演。

提問:“移項”是注意什么?

學生:變號。

教師關(guān)注:學生“移項”時是否能夠注意變號。

通過這個例題,掌握“ax+b=cx+d”類型的一元一次方程的解法。體驗“移項”這種變形在解方程中的作用,規(guī)范解題步驟。

活動四 鞏固提高

1.第91頁練習(1)(2)

2.某貨運公司要用若干輛汽車運送一批貨物。如果每輛拉6噸,則剩余15噸;如果每輛拉8噸,則差5噸才能將汽車全部裝滿。問運送這批貨物的汽車多少量?

3.小明步行由A地去B地,若每小時走6千米,則比規(guī)定時間遲到1小時;若每小時走8千米,則比規(guī)定時間早到0.5小時。求A、B兩地之間的距離。

教師按順序出示問題。

學生獨立完成,用實物投影展示部分學而生練習。

教師關(guān)注:

1.學生在計算中可能出現(xiàn)的錯誤。

2.x系數(shù)為分數(shù)時,可用乘的辦法,化系數(shù)為1。

3.用實物投影展示學困生的完成情況,進行評價、鼓勵。

鞏固“ax+b=cx+d”類型的一元一次方程的解法,反饋學生對解方程步驟的掌握情況和可能出現(xiàn)的計算錯誤。

2、3題的重點是在新情境中引導學生利用已有經(jīng)驗解決實際問題,達到鞏固提高的目的。

活動五

提問1:今天我們學習了解方程的那種變形?它有什么作用、應注意什么?

提問2:本節(jié)課重點利用了什么相等關(guān)系,來列的方程?

教師組織學生就本節(jié)課所學知識進行小結(jié)。

學生進行總結(jié)歸納、回答交流,相互完善補充。

教師關(guān)注:學生能否提煉出本節(jié)課的重點內(nèi)容,如果不能,教師則提出具體問題,引導學生思考、交流。

引導學生對本節(jié)所學知識進行歸納、總結(jié)和梳理,以便于學生掌握和運用。

布置作業(yè):

第93頁第3題

《解一元一次方程》數(shù)學教案 篇3

一、課題名稱:

3.3解一元一次方程(二)——去括號與去分母

二、教學目的和要求:

1、知識目標

(1)通過對比運用算術(shù)和列方程兩種方法解決實際問題的過程,使學生體會到列方程解應用題更簡潔明了,省時省力;

(2)掌握去括號解一元一次方程的方法,能熟練求解一元一次方程(數(shù)字系數(shù)),并判別解的合理性。

2、能力目標

(1)通過學生觀察、獨立思考等過程,培養(yǎng)學生歸納、慨括的能力;

(2)進一步讓學生感受到并嘗試尋找不同的解決問題的方法。

3、情感目標

(1)激發(fā)學生濃厚的學習興趣,使學生有獨立思考、勇于創(chuàng)新的精神,養(yǎng)成按客觀規(guī)律辦事的良好習慣;

(2)培養(yǎng)學生嚴謹?shù)乃季S品質(zhì);

(3)通過學生間的相互交流、溝通,培養(yǎng)他們的協(xié)作意識。

三、教學重難點:

重點:去分母解方程。

難點:去分母時,不含分母的項會漏乘公分母,及沒有對分子加括號。

四、教學方法與手段:

運用引導發(fā)現(xiàn)法,引進競爭機制,調(diào)動課堂氣氛

五、教學過程:

1、創(chuàng)設情境,提出問題

問題1:我手中有6,x,30三張卡片,請同學們用他們編個一元一次方程,比一比看誰編的又快有對。

學生思考,根據(jù)自己對一元一次方程的理解程度自由編題。

問題2:解方程5(x-2)=8

解:5x=8+2,x=2,看一下這位同學的解法對嗎?相信學完本節(jié)內(nèi)容后,就知道其中的奧秘。

問題3:某工廠加強節(jié)能措施,去年下半年與上半年相比,月平均用電減少2000度,全年用電15萬度,這個工廠去年上半年每月平均用電多少度?

2、探索新知

(1)情境解決

問題1:設上半年每月平均用電x度,則下半年每月平均用電____度;上半年共用電____度,下半年共有電_____度。

問題2:教室引導學生尋找相等關(guān)系,列方程。

根據(jù)全年用電15萬度,列方程,得6x+6(x-2000)=150000.

問題3:怎樣使這個方程向x=a的形式轉(zhuǎn)化呢?

6x+6(x-2000)=150000

↓去括號

6x+6x-12000=150000

↓移項

6x+6x=150000+12000

↓合并同類項

12x=162000

↓系數(shù)化為1

x=13500

問題4:本題還有其他列方程的方法嗎?

用其他方法列出的方程應怎樣解?

設下半年每月平均用電x度,則6x+6(x+2000)=150000.

(學生自己進行解決)

歸納結(jié)論:方程中有帶括號的式子時,根據(jù)乘法分配率和去括號法則化簡。(見“+”不變,見“—”全變)

去括號時要注意:

(1)不要漏乘括號內(nèi)的任何一項;

(2)若括號前面是“—”號,記住去括號后括號內(nèi)各項都變號。

(2)解一元一次方程——去括號

例題、解方程:3x—7(x—1)=3—2(x+3)。

解:去括號,得3x—7x+7=3—2x—6

移項,得3x—7x+2x=3—6—7

合并同類項,得—2x=—10

系數(shù)化為1,得x=5

3、變式訓練,熟練技能

(1)解下列方程:

(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);

(2)3(2-3x)-3[3(2x-3)+3]=5;

(3)2 (x+1)+3(x+2)-3=-4(x+3).

(2)學校團委組織65名團員為學校建花壇搬磚,初一同學每人搬6塊,其他年級同學每人搬8塊,總共搬了400塊,問初一同學有多少人參加了搬磚?

(3)學校田徑隊的小剛在400米跑測試時,先以6米/秒的速度跑完了大部分的路程,最后以8米/秒的速度沖刺到達終點,成績?yōu)?分零5秒,問小剛在沖刺以前跑了多少時間?

4、總結(jié)反思,情意發(fā)展

(1)本節(jié)課你學習了什么?

(2)本節(jié)課你有哪些收獲?

(3)通過今天的學習,你想進一步探究的問題是什么?

可以歸納為如下幾點:

①本節(jié)主要學習用去括號的方法解一元一次方程。

②主要用到的思想方法是轉(zhuǎn)化思想。

③注意的問題:括號前是“—”號的,去括號時,括號內(nèi)的各項要改變符號,乘數(shù)與括號內(nèi)多項式相乘,乘數(shù)應乘遍括號內(nèi)的各項;在實際問題中,要會找等量關(guān)系。

5、布置作業(yè)

(1)必做題:課本第98頁習題3.3第

1、2題。

(2)選做題:

①解方程:3x-2[3(x-1)-2(x+2)]=3(18-x)。

②杭州新西湖建成后,某班40名同學劃船游湖,一共租了8條小船,其中有可坐4人的小船和可坐6人的小船,40名同學剛好坐滿8條小船,問這兩種小船各租了幾條?

六、課后小結(jié):

本節(jié)課突出數(shù)學的應用意識。教師首先用學生感興趣的游戲和實際問題引入課題,然后逐步給出解答。在各環(huán)節(jié)的安排上都設計成一個個的問題,使學生能圍繞問題展開

思考、討論,進行學習。

強調(diào)學生主體意識的體現(xiàn),在設計中,教師始終把學生放在主體的地位,讓學生通過嘗試得到解決,歸納出去括號解方程的特點,讓學生通過合作與交流,得出問題的不同解答方法。

從設計上體現(xiàn)學生思維的層次性。教師首先引導學生嘗試列出含未知數(shù)的式子,尋找相等關(guān)系列出方程。

《解一元一次方程》數(shù)學教案 篇4

【教學任務分析】

教學目標

知識

技能

1.用一元一次方程解決“數(shù)字型”問題;

2.能熟練的通過合并,移項解一元一次方程;

3.進一步學習、體會用一元一次方程解決實際問題.

過程

方法通過學生自主探究,師生共同研討,體驗將實際問題轉(zhuǎn)化成數(shù)學問題,學會探索數(shù)列中的規(guī)律,建立等量關(guān)系并加以解決,同時進一步滲透化歸思想.

情感

態(tài)度經(jīng)歷運用方程解決實際問題的過程,發(fā)展抽象、概括、分析和解決問題的能力,體會數(shù)學對實踐的指導意義.

重點建立一元一次方程解決實際問題的模型.

難點探索并發(fā)現(xiàn)實際問題中的等量關(guān)系,并列出方程.

【教學環(huán)節(jié)安排】

環(huán)節(jié)教學問題設計教學活動設計

情境引入

牽線搭橋,解下列方程:

(1)-5x+5=-6x;(2);

(3)0.5x+0.7=1.9x;

總結(jié)解“ax+b=cx+d”類型的一元一次方程的步驟方法.

引出問題即課本例3

問:你能利用所學知識解決有關(guān)數(shù)列的問題嗎?教師:出示題目,提出要求.

學生:獨立完成,根據(jù)講評核對、自我評價,了解掌握情況.

探究一:數(shù)字問題

例3有一列數(shù),按一定規(guī)律排列成1,-3,9,-27,81,-243……其中某三個相鄰數(shù)的和是-1701,這三個數(shù)各是多少?

【分析】

1.引導學生觀察這列數(shù)有什么規(guī)律?

①數(shù)值變化規(guī)律?②符號變化規(guī)律?

結(jié)論:后面一個數(shù)是前一個數(shù)的-3倍.

2.怎樣求出這三個數(shù)?

①設三個相鄰數(shù)中的第一個數(shù)為x,那么其它兩個數(shù)怎么表示?

②列出方程:根據(jù)三個數(shù)的和是-1701列出方程.

③解略

變式:你能設其它的數(shù)列方程解出嗎?試一試.比比較哪種設法簡單.

探究二:百分比問題(習題3.2第8題)

【問題】某鄉(xiāng)改種玉米為種優(yōu)質(zhì)雜糧后,今年農(nóng)民人均收入比去年提高20%.今年人均收入比去年的1.5倍少1200元.這個鄉(xiāng)去年農(nóng)民人均收入是多少元?

【分析】①若設這個鄉(xiāng)去年農(nóng)民人均收入是x元,今年人均收入比去年提高20%,那么今年的收入是_________元;

②因為今年的人均收入比去年的1.5倍少1200元,所以今年的收入又可以表示為_________元.

③根據(jù)“表示同一個量的兩個式子相等”可以列出方程為________________________.

解答略教師:引導學生分析.

2.本例是有關(guān)數(shù)列的數(shù)學問題,題要求出三個未知數(shù),這需要學生觀察發(fā)現(xiàn)它們的排列規(guī)律,問題具有一定的挑戰(zhàn)性,能激發(fā)學生學習探索規(guī)律類型的問題.

學生:觀察、討論、闡述自己的發(fā)現(xiàn),并互相交流.

根據(jù)分析列出方程并解出,求出所求三個數(shù).

備注:尋找數(shù)的排列規(guī)律是難點,可讓學生小組內(nèi)討論發(fā)現(xiàn)、解決.

變換設法,列出方程,比較優(yōu)劣、闡述發(fā)現(xiàn)和體會.

教師:出示題目,引導學生,讓學生嘗試分析,多鼓勵.

學生:根據(jù)引導思考、回答、闡述自己的觀點和認識.

根據(jù)共同的分析,列出方程并解出,

(說明:此題目數(shù)以百分比、增長率問題可根據(jù)實際情況安排,若沒時間,可在習題課上處理)

嘗試應用

1、填空

(1)有個三位數(shù),個位上的數(shù)字是a,十位上的數(shù)字是b,百位上的數(shù)字是c,則這個三位數(shù)是:_______________.

(2)有一數(shù)列,按一定規(guī)律排成1,-2,3,2,-4,6,3,-6,9,接下來的三個數(shù)為_____________________.

(3)三個連續(xù)偶數(shù),設第一個為2x,那么第二個為_______,第三個為______,它們的和是__________;若設中間的一個為x,那么第一個為_____,第三個為______,它們的和是__________.

2.一個三位數(shù),三個數(shù)位上的數(shù)字的和為17,百位上的數(shù)字比十位上的數(shù)字大7,個位上的數(shù)字是十位上數(shù)字的3倍,你能求出這個三位數(shù)嗎?這是最經(jīng)常出現(xiàn)的一類數(shù)字問題:引導學生分析已知各位上的數(shù)字,怎么表示這個數(shù),理解為什么不能表示成cba?這是解決這類問題的基礎.

通過(3)題理解連續(xù)數(shù)的表示法,并感受怎么表示最簡單.

通過2題讓學生理解怎么設?以及怎么設簡單(舍都有聯(lián)系的一個),并感受用未知數(shù)表示多個未知量,順藤摸瓜,從而列出方程的順向思維方式.

教師:結(jié)合完成題目,匯總講解,重點在于解法.

成果展示

1.通過本節(jié)所學你有哪些收獲?

2.談談你掌握的方法和學習的感受,以及你對應用方程解決問題的體會.學生自我闡述,教師評價鼓勵、補充總結(jié).

補償提高

1.有一數(shù)列,按一定規(guī)律排成0,2,6,12,20,30,…,則第8個數(shù)為______,第n個數(shù)為_____.

2.下面給出的是2010年3月份的日歷表,任意圈出一豎列上相鄰的三個數(shù),請你運用方程思想來研究,圈出的三個數(shù)的和不可能是( ).

A.69B.54C.27D.40

通過練習,掌握數(shù)字問題的分類及不同解法,鞏固、體會用方程解決問題的思路和思維方式,學會用方程解決問題.

題目設置是對前面學生所出現(xiàn)的問題進行針對性的補償和補充,也可對學有余力的學生拓展提高.

根據(jù)學生完成情況靈活設置問題.

作業(yè)

設計作業(yè):

必做題:課本4、5、第94頁6題.

選做題:同步探究.教師布置作業(yè),并提出要求.

學生課下獨立完成,延續(xù)課堂.

《解一元一次方程》數(shù)學教案 篇5

教學目標

1.掌握解一元一次方程的一般步驟。

2.會根據(jù)一元一次方程的特點靈活處理解方程的步驟,化為ax=b(a≠0)的形式。

教學重、難點

重點:掌握解一元一次方程的基本方法.

難點:正確運用去分母、去括號、移項等方法,靈活解一元一次方程.

教學過程

一激情引趣,導入新課

1解方程:4x-3(20-x)=6x-7(9-x)

思考:解一元一次方程時,去括號要注意什么?移項要注意什么?

2求下列各數(shù)的最少公倍數(shù):(1)12,24,36(2)18,16,24

二合作交流,探究新知

1動腦筋:

一件工作,甲單獨做需要15天完成,乙單獨做需要12天完成,現(xiàn)在甲先單獨做1天,接著乙又單獨做4天,剩下的工作由甲、乙兩人合做,問合做多少天可以完成全部工作任務?

(先獨立做,做完后交流做法,認真聽出同學意見,老師點評)

通過這個問題,請你歸納解一元一次方程有哪些步驟?

先去____,后去_____,再_____、_______得到標準形式ax=b(a≠0),最后兩邊同除以______的系數(shù)。

考考你:

下面各題中的去分母對嗎?如不對,請改正。

(1)去分母得5x-2x+3=2(2)去分母得2x-(2x+1)=6

(3)去分母得4(3x+1)+25x=80

2嘗試練習(注意養(yǎng)成口算經(jīng)驗的好習慣)

解方程:

3比一比,看誰算得準(注意養(yǎng)成口算經(jīng)驗的好習慣)

解方程:(1),(2)

三應用遷移,鞏固提高

1化繁為簡

例1解方程:

2化為一元一次方程求解

例2若關(guān)于x的一元一次方程的解是x=-1,則k的值是()

AB1CD0

3實踐應用

例3學校準備組織教師和優(yōu)秀學生去大洪山春游,其中教師22名現(xiàn)有甲乙兩家旅行社,兩家定價相同,但優(yōu)惠方式不同,甲旅行社表示教師免費,學生按八折收費,乙旅行社表示教師和學生一律按七五折收費,學校領(lǐng)導經(jīng)過核算后認為甲乙兩家旅行社收費一樣,請你算出有多少名學生參加春游。

四沖刺奧賽,培養(yǎng)智力

例4解方程:

五課堂練習鞏固提高解方程

六反思小結(jié)拓展提高

解一元一次方程的一般步驟是什么?要注意什么?

作業(yè):p1198,9

《解一元一次方程》數(shù)學教案 篇6

一、教學目標:

1、知識目標:了解一元一次方程的概念,掌握含括號的一元一次方程的解法。

2、能力目標:培養(yǎng)學生的運算能力與解題思路。

3、情感目標:通過主動探索,合作學習,相互交流,體會數(shù)學的嚴謹,感受數(shù)學的魅力,增加學習數(shù)學的興趣。

二、教學的重點與難點:

1、重點:了解一元一次方程的概念,解含有括號的一元一次方程的解法。

2、難點:括號前面是負號時,去括號時忘記變號。移項法則的靈活運用。

三、教學方法:

1、教 法:講課結(jié)合法

2、學 法:看中學,講中學,做中學

3、教學活動:講授

四、課 型:

新授課

五、課 時:

第一課時

六、教學用具

彩色粉筆,小黑板,多媒體

七、教學過程

1、創(chuàng)設情景:

今天讓我們一起做個小小的游戲,這個游戲的名字叫:猜猜你心中的“她”

心里想一個數(shù)

將這個數(shù)+2

將所得結(jié)果

最后+7

將所得的結(jié)果告訴老師

(抽一個同學,讓他把他計算的結(jié)果告訴老師,由老師通過計算得到他最開始所想的數(shù)字。)

老師:同學們知道老師是怎樣猜到的嗎?

同學:不知道。

老師:那同學們想知道老師是怎樣猜到的`嗎?這就是我們今天所要學習的內(nèi)容——解一元一次方程。

2、探究新知:

一元一次方程的概念:

前面我們遇到的一些方程,例如 3

老師:大家觀察這些方程,它們有什么共同特征?

(提示:觀察未知數(shù)的個數(shù)和未知數(shù)的次數(shù)。)

(抽同學起來回答,然后再由老師概括。)

只含有一個未知數(shù),并且含有未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是l,像這樣的方程

叫做一元一次方程。

老師:同學們從這個概念中,能找出關(guān)鍵的字嗎?能用它來判斷一個式子是否是一元一次

方程嗎?

再次強調(diào)特征:

(1)只含一個未知數(shù);

(2)未知數(shù)的次數(shù)為1;

(3)是一個整式。

(注意:這幾個特征必須同時滿足,缺一不可。)

3、例題講解:

例1判斷如下的式子是一元一次方程嗎?

(寫在小黑板上,讓學生判斷,并分別抽同學起來回答,如果不是,要說出理由。)

① ② ③

④ ⑤⑥

準確答案:①③

下面我們再一起來解幾個一元一次方程。

例2、解方程

(1)

解法一:解法二:

提醒:去括號的時候,如果括號外面是負號,去括號時,括號里面要變號

(提示第二種解法:先移項,再去括號。即是把 看成整體的一元一次方程的求解。)

(2)

解:

提示

1)、在我們前面學過的知識中,什么知識是關(guān)于有括號的。

2)、復習乘法分配律: ,強調(diào)去括號時把括號外的因數(shù)分別乘以括號

內(nèi)的每一項,若括號前面是“-”號,注意去掉括號,要改變括號內(nèi)的每一項的符號。

3)、問同學們能不能運用這個知識來去掉這個括號,如果能該怎么去呢?抽一個同學起

來回答。

4)、問:去了括號的式子,又該做什么呢?我們前面見過此類的方程的,引出移項,并強調(diào)移項時注意符號的變化。此處運用了等式的性質(zhì)。

5)、一起回顧合并同類項的法則:未知數(shù)的系數(shù)相加。

6)、系數(shù)化為1,運用了等式的性質(zhì)。

(求解的每一步的時候,抽同學起來回答,該怎么進行,運用了什么知識,同學敘述,老師寫,同學說完后,老師在點評,最后歸納解含括號的一元一次方程的步驟,并強 調(diào)解題格式。)

方程(1)該怎樣解?由學生獨立探索解法,并互相交流。

解一元一次方程的步驟:

去括號,移項,合并同類項,系數(shù)化為1。

4、鞏固練習

(1)解方程(2)當y為何值時,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)

(鞏固練習,抽兩個同學上黑板去完成,其余的同學在演草紙上完成,待同學們完成后給予點評。)

5小結(jié):和同學們一起回顧我們這節(jié)課學習了什么?

解一元一次方程

概念

含括號的一元一次方程的解法

作業(yè):

1、P12 。1

2、預習下一節(jié)課的內(nèi)容,

3、復習此節(jié)課的內(nèi)容,并完成一下兩道思考題。

思考:

(1) 解方程:

說明:方程中有多重括號時,一般應按先去小括號,再去中括號,最后去大括

號的方法去括號,每去一層括號合并同類項一次,以簡便運算。

(2) 該怎么求解?

《解一元一次方程》數(shù)學教案 篇7

一、教學目標

(一).知識與技能

會利用合并同類項解一元一次方程.

(二).過程與方法

通過對實例的分析,體會一元一次方程作為實際問題的數(shù)學模型的作用.

(三).情感態(tài)度與價值觀

開展探究性學習,發(fā)展學習能力.

二、重、難點與關(guān)鍵

(一).重點:會列一元一次方程解決實際問題,并會合并同類項解一元一次方程.

(二).難點:會列一元一次方程解決實際問題.

(三).關(guān)鍵:抓住實際問題中的數(shù)量關(guān)系建立方程模型.

三、教學過程

(一)、復習提問

1.敘述等式的兩條性質(zhì).

2.解方程:4(x- )=2.

解法1:根據(jù)等式性質(zhì)2,兩邊同除以4,得:

x- =

兩邊都加 ,得x= .

解法2:利用乘法分配律,去掉括號,得:

4x- =2

兩邊同加 ,得4x=

兩邊同除以4,得x= .

(二)、新授

公元825年左右,中亞細亞數(shù)學家阿爾、花拉子米寫了一本代數(shù)書,重點論述怎樣解方程.這本書的拉丁文譯本取名為《對消與還原》.對消與還原是什么意思呢?讓我們先討論下面內(nèi)容,然后再回答這個問題.

問題1:某校三年級共購買計算機140臺,去年購買數(shù)量是前年的2倍,今年購買數(shù)量又是去年的2倍,前年這個學校購買了多少臺計算機?

分析:設前年這個學校購買了x臺計算機,已知去年購買數(shù)量是前年的2倍,那么去年購買2x臺,又知今年購買數(shù)量是去年的2倍,則今年購買了22x(即4x)臺.

題目中的相等關(guān)系為:三年共購買計算機140臺,即

前年購買量+去年購買量+今年購買量=140

列方程:x+2x+4x=140

如何解這個方程呢?

2x表示2x,4x表示4x,x表示1x.

根據(jù)分配律,x+2x+4x=(1+2+4)x=7x.

這樣就可以把含x的項合并為一項,合并時要注意x的系數(shù)是1,不是0.

下面的框圖表示了解這個方程的具體過程:

x+2x+4x=140

合并

7x=140

系數(shù)化為1

x=20

由上可知,前年這個學校購買了20臺計算機.

上面解方程中合并起了化簡作用,把含有未知數(shù)的項合并為一項,從而達到把方程轉(zhuǎn)化為ax=b的形式,其中a、b是常數(shù).

例:某班學生共60分,外出參加種樹活動,根據(jù)任何的不同,要分成三個小組且使甲、乙、丙三個小組人數(shù)之比是2:3:5,求各小組人數(shù).

分析:這里甲、乙、丙三個小組人數(shù)之比是2:3:5,就是說把總數(shù)60人分成10份,甲組人數(shù)占2份,乙組人數(shù)占3份,丙組人數(shù)占5份,如果知道每一份是多少,那么甲、乙、丙各組人數(shù)都可以求得,所以本題應設每一份為x人.

問:本題中相等關(guān)系是什么?

答:甲組人數(shù)+乙組人數(shù)+丙組人數(shù)=60.

解:設每一份為x人,則甲組人數(shù)為2x人,乙組人數(shù)為3x人,丙組為5x人,列方程:

2x+3x+5x=60

合并,得10x=60

系數(shù)化為1,得x=6

所以2x=12,3x=18,5x=30

答:甲組12人,乙組18人,丙組30人.

請同學們檢驗一下,答案是否合理,即這三組人數(shù)的比是否是2:3:5,且這三組人數(shù)之和是否等于60.

(三)、鞏固練習

1.課本第89頁練習.

(1)x=3.

(2)可以先合并,也可以先把方程兩邊同乘以2.

具體解法如下:

解法1:合并,得( + )x=7

即 2x=7

系數(shù)化為1,得x=

解法2:兩邊同乘以2,得x+3x=14

合并,得 4x=14

系數(shù)化為1,得 x=

(3)合并,得-2.5x=10

系數(shù)化為1,得x=-4

2.補充練習.

(1)足球的表面是由若干個黑色五邊形和白色六邊形皮塊圍成的,黑白皮塊的數(shù)目比為3:5,一個足球的表面一共有32個皮塊,黑色皮塊和白色皮塊各有多少?

(2)某學生讀一本書,第一天讀了全書的多2頁,第二天讀了全書的少1頁,還剩23頁沒讀,問全書共有多少頁?(設未知數(shù),列方程,不求解)

解:(1)設每份為x個,則黑色皮塊有3x個,白色皮塊有5x個.

列方程 3x+2x=32

合并,得 8x=32

系數(shù)化為1,得 x=4

黑色皮塊為43=12(個),白色皮塊有54=20(個).

(2)設全書共有x頁,那么第一天讀了( x+2)頁,第二天讀了( x-1)頁.

本問題的相等關(guān)系是:第一天讀的量+第二天讀的量+還剩23頁=全書頁數(shù).

列方程: x+2+ x-1+23=x.

四、課堂小結(jié)

初學用代數(shù)方法解應用題,感到不習慣,但一定要克服困難,掌握這種方法,掌握列一元一次方程解決實際問題的一般步驟,其中找等量關(guān)系是關(guān)鍵也是難點,本節(jié)課的兩個問題的相等關(guān)系都是:總量=各部分量的和.這是一個基本的相等關(guān)系.

合并就是把類型相同的項系數(shù)相加合并為一項,也就是逆用乘法分配律,合并時,注意x或-x的系數(shù)分別是1,-1,而不是0.

五、作業(yè)布置

1.課本第93頁習題3.2第1、3(1)、(2)、4、5題.

2.選用課時作業(yè)設計.

合并同類項習題課(第2課時)

一、解方程.

1.(1)3x+3-2x=7; (2) x+ x=3;

(3)5x-2-7x=8; (4) y-3-5y= ;

(5) - =5; (6)0.6x- x-3=0.

二、解答題.

2.育紅小學現(xiàn)有學生320人,比1995年學生人數(shù)的 少150人,問育紅小學1995年學生人數(shù)是多少?

3.甲、乙兩地相距460千米,A、B兩車分別從甲、乙兩地開出,A車每小時行駛60千米,B車每小時行駛48千米.

(1)兩車同時出發(fā),相向而行,出發(fā)多少小時兩車相遇?

(2)兩車相向而行,A車提前半小時出發(fā),則在B車出發(fā)后多少小時兩車相遇?相遇地點距離甲地多遠?

4.甲、乙二人從A地去B地,甲步行每小時走4千米,乙騎車每小時比甲多走8千米,甲出發(fā)半小時后乙出發(fā),恰好二人同時到達B地,求A、B兩地之間的距離.

5.一條環(huán)形跑道長400米,甲練習騎自行車,平均每分鐘行駛550米;乙練習長跑,平均每分鐘跑250米,兩人同時、同地、同向出發(fā),經(jīng)過多少時間,兩人首次相遇?

《解一元一次方程》數(shù)學教案 篇8

教學目的:

理解一元一次方程解簡單應用題的方法和步驟;并會列一元一次方程解簡單應用題。

重點、難點

1、 重點:弄清應用題題意列出方程。

2、 難點:弄清應用題題意列出方程。

教學過程

一、復習

1、 什么叫一元一次方程?

2、 解一元一次方程的理論根據(jù)是什么?

二、新授。

例1、如圖(課本第10頁)天平的兩個盤內(nèi)分別盛有51克,45克食鹽,問應該從盤A內(nèi)拿出多少鹽放到月盤內(nèi),才能兩盤所盛的鹽的質(zhì)量相等?

先讓學生思考,引導學生結(jié)合填表,體會解決實際問題,重在學會探索:已知量和未知量的關(guān)系,主要的等量關(guān)系,建立方程,轉(zhuǎn)化為數(shù)學問題。

分析:設應從A盤內(nèi)拿出鹽x,可列表幫助分析。

等量關(guān)系;A盤現(xiàn)有鹽=B盤現(xiàn)有鹽

完成后,可讓學生反思,檢驗所求出的解是否合理。

(盤A現(xiàn)有鹽為5l-3=48,盤B現(xiàn)有鹽為45+3=48。)

培養(yǎng)學生自覺反思求解過程和自覺檢驗方程的解是否正確的良好習慣。

例2.學校團委組織65名團員為學校建花壇搬磚,初一同學每人搬6塊,其他年級同學每人搬8塊,總共搬了400塊,問初一同學有多少人參加了搬磚?

引導學生弄清題意,疏理已知量和未知量:

1.題目中有哪些已知量?

(1)參加搬磚的初一同學和其他年級同學共65名。

(2)初一同學每人搬6塊,其他年級同學每人搬8塊。

(3)初一和其他年級同學一共搬了400塊。

2.求什么?

初一同學有多少人參加搬磚?

3.等量關(guān)系是什么?

初一同學搬磚的塊數(shù)十其他年級同學的搬磚數(shù)=400

如果設初一同學有工人參加搬磚,那么由已知量(1)可得,其他年級同學有(65-x)人參加搬磚;再由已知量(2)和等量關(guān)系可列出方程

6x+8(65-x)=400

也可以按照教科書上的列表法分析

三、鞏固練習

教科書第12頁練習1、2、3

第l題:可引導學生畫線圖分析

等量關(guān)系是:AC十CB=400

若設小剛在沖刺階段花了x秒,即t1=x秒,則t2(65-x)秒,再

由等量關(guān)系就可列出方程:

6(65-x)+8x=400

四、小結(jié)

本節(jié)課我們學習了用一元一次方程解答實際問題,列方程解應用題的關(guān)鍵在于抓住能表示問題含意的一個主要等量關(guān)系,對于這個等量關(guān)系中涉及的量,哪些是已知的,哪些是未知的,用字母表示適當?shù)奈粗獢?shù)(設元),再將其余未知量用這個字母的代數(shù)式表示,最后根據(jù)等量關(guān)系,得到方程,解這個方程求得未知數(shù)的值,并檢驗是否合理。最后寫出答案。

五、作業(yè)

詞條內(nèi)容僅供參考,如果您需要解決具體問題
(尤其在法律、醫(yī)學等領(lǐng)域),建議您咨詢相關(guān)領(lǐng)域?qū)I(yè)人士。

推薦詞條