国产超薄丝袜足底脚交国产_少妇愉情理伦片丰满丰满_一区二区三区中文人妻制服_久久久久88色偷偷免费_色婷婷久久久swag精品

首頁 > 職業(yè)資格  > 

三角形內(nèi)角和教學教案設(shè)計 全球報道

2023-06-21   來源:萬能知識網(wǎng)

三角形內(nèi)角和教學教案設(shè)計(精選10篇)

作為一名無私奉獻的老師,通常需要準備好一份教案,借助教案可以讓教學工作更科學化。那么優(yōu)秀的教案是什么樣的呢?以下是小編幫大家整理的三角形內(nèi)角和教學教案設(shè)計,歡迎大家借鑒與參考,希望對大家有所幫助。


(資料圖)

三角形內(nèi)角和教學教案設(shè)計 篇1

一、教學目標:

1、理解掌握三角形內(nèi)角和是180°,并運用這一性質(zhì)解決一些簡單的問題。

2、通過直觀操作的方法,引導學生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°,在實驗活動中,體驗探索的過程和方法。

3、在探索和發(fā)現(xiàn)三角形內(nèi)角和的過程中獲得成功的體驗。

二、教學重、難點:

重點:探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°。

難點:運用三角形內(nèi)角和等于180°的性質(zhì)解決一些實際問題。

教具:課件、三角形若干。

學具:量角器、直角三角形、銳角三角形和鈍角三角形各一個。

三、教學過程

(一)創(chuàng)設(shè)情境,導入新課

我們已經(jīng)學過了三角形的知識,我們來復習一下,看看大屏幕,各是什么三角形?誰能說說什么是銳角三角形、直角三角形、鈍角三角形?追問:不管是什么三角形它們都有幾個角呢?這三個角都叫做三角形的內(nèi)角,而這三個內(nèi)角的和就是這個三角形的內(nèi)角和。那么誰來說一說什么是三角形的內(nèi)角和?三角形有大有小,形狀也各不相同,那么它們的內(nèi)角和有沒有什么特點和規(guī)律呢?我們來看一個小片段,仔細聽它們都說了什么?

教師放課件。

課件內(nèi)容說明:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大?!币粋€鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”

都聽清它們在爭論什么嗎?(它們在爭論誰的內(nèi)角和大。)誰能說一說你的想法?(學生各抒己見,是不評價)果真是這樣嗎?下面我們就來研究“三角形內(nèi)角和”。

(板書課題:三角形內(nèi)角和)

(二)自主探究,發(fā)現(xiàn)規(guī)律

1、探究三角形內(nèi)角和的特點。

(1)檢查作業(yè),并提出要求:

昨天老師讓每位學生都分別剪出了銳角三角形、直角三角形和鈍角三角形,并量出了每個角的度數(shù),都完成了嗎?拿出來吧,一會我們要算出三角形的內(nèi)角和填在下面的表格里。我們來看一下表格以及要求。出示小組活動記錄表。

小組活動記錄表

小組成員的姓名

三角形的形狀

每個內(nèi)角的度數(shù)

三角形內(nèi)角的和

(要求:填完表后,請小組成員仔細觀察你發(fā)現(xiàn)了什么?)

②小組合作。

會使用表格了嗎?下面我們就以小組為單位,按照要求把結(jié)果填在小組長手中的表格內(nèi)。

各組長進行匯報。發(fā)現(xiàn)了三角形的內(nèi)角和都是180°左右。

師:實際上,三角形三個內(nèi)角和就是180°,只是因為測量有誤差,所以我們才得到剛才得到的數(shù)據(jù)。

2、驗證推測。

那么同學們有沒有什么辦法知道三角形的內(nèi)角和就是180°呢?大家可以討論一下,學生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。師生先演示撕下三個角拼在一起是否是平角,同學們在下面操作進行體驗,再用課件演示把三個內(nèi)角折疊在一起(這時要注意平行折,把一個頂點放在邊上)學生也動手試一試。

通過我們的驗證我們可以得出三角形的內(nèi)角和是180°。

板書:(三角形內(nèi)角和等于180°。)

3、師談話:三個三角形討論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么嗎?(讓學生暢所欲言,對得出的三角形內(nèi)角和是180°做系統(tǒng)的整理。)

4、同學們還有什么疑問嗎?大家想一想我們知道了三角形內(nèi)角和是180°可以干什么呢?(知道三角形中兩個角,可以求出第三個角)

出示書28頁,試一試第3題,并講解。

說明:在直角三角形中一個銳角等于30°,求另一個銳角。

生獨立做,再訂正格式、以及強調(diào)不要忘記寫度。

小結(jié):同學們有沒有不明白的地方?如果沒有我們來做練習。

(三)鞏固練習,拓展應用

1、出示書29頁第一題。說明:第一幅圖是銳角三角形已知一個銳角是75°,另一個銳角是28°,求第三個銳角?第二幅圖是直角三角形已知一個銳角是35°,求另一個銳角?第三幅圖是鈍角三角形已知一個銳角是20°,另一個銳角是45°,求鈍角?

完成,并填在書上。講一講直角三角形還有什么解法。

2、出示29頁第2題。

說明:一個鈍角三角形說:我的兩個銳角之和大于90°。

一個直角三角形說:我的兩個銳角之和正好等于90°。讓學生判斷。

3、畫一畫:

出示四邊形和六邊形。運用三角形內(nèi)角和是180°計算出各自的內(nèi)角和。你能推算出多邊形的內(nèi)角和嗎?

三角形內(nèi)角和180度是科學家帕斯卡12歲時發(fā)現(xiàn)的。我們同學還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。

(四)課堂總結(jié)

讓學生說說在這節(jié)課上的收獲!

三角形內(nèi)角和教學教案設(shè)計 篇2

一、教學目標

1.知識目標:通過測量、撕拼(剪拼)、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°這一規(guī)律,并能實際應用。

2.能力目標:培養(yǎng)學生主動探索、動手操作的能力。使學生養(yǎng)成良好的合作習慣。

3.情感目標:讓學生體會幾何圖形內(nèi)在的結(jié)構(gòu)美。并充分體會到學習數(shù)學的快樂。

二、教學過程

(一)創(chuàng)設(shè)情境,導入新課

1、師:我們已經(jīng)認識了三角形,你知道哪些關(guān)于三角形的知識?

(學生暢所欲言。)

2、師:我們在討論三角形知識的時候,三角形中的三個好朋友卻吵了起來,想知道是怎么回事嗎?讓我們一起去看看吧!

師口述:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大?!币粋€鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”,

3、到底誰說的對呢?今天我們就來研究有關(guān)三角形內(nèi)角和的知識。(板書課題:三角形內(nèi)角和)

(二)自主探究,發(fā)現(xiàn)規(guī)律

1、認識什么是三角形的內(nèi)角和。

師:你知道什么是三角形的內(nèi)角和嗎?

通過學生討論,得出三角形的內(nèi)角和就是三角形三個內(nèi)角的度數(shù)和。

2、探究三角形內(nèi)角和的特點。

①讓學生想一想、說一說怎樣才能知道三角形的內(nèi)角和?

學生會想到量一量每個三角形的內(nèi)角,再相加的方法來得到三角形的內(nèi)角和。(如果學生想到別的方法,只要合理的,教師就給予肯定,并鼓勵他們對自己想到的方法進行)

②小組合作。

通過小組合作后交流,匯報。(教師同時板書出幾個小組匯報的結(jié)果)讓學生們發(fā)現(xiàn)每個三角形的內(nèi)角和都在180°左右。

引導學生推測出三角形的內(nèi)角和可能都是180°。

3、驗證推測。

讓學生動腦筋想一想,怎樣才能驗證自己的推想是否正確,學生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。

(小組合作驗證,教師參與其中。)

4、全班交流,共同發(fā)現(xiàn)規(guī)律。

當學生匯報用折拼或剪拼的方法的時候,指名學生上黑板展示結(jié)果。

學生交流、師生共同總結(jié)出三角形的內(nèi)角和等于180°。教師同時板書(三角形內(nèi)角和等于180°。)

5、師談話:三個三角形討論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么嗎?(讓學生暢所欲言,對得出的三角形內(nèi)角和是180°做系統(tǒng)的整理。)

(三)鞏固練習,拓展應用

根據(jù)發(fā)現(xiàn)的三角形的新知識來解決問題。

1、完成“試一試”

讓學生獨立完成后,集體交流。

2、游戲:選度數(shù),組三角形。

請選出三個角的度數(shù)來組成一個三角形。

150°10°15°18°20°32°

35°50°52°54°56°58°

130°70°72°75°60°

學生回答的同時,教師操作課件,把學生選擇的度數(shù)拖入方框內(nèi),通過電腦計算相加是否等于180°,來驗證學生的選擇是否正確。驗證學生選的對了以后,再讓學生判斷選擇的度數(shù)所組成的三角形按角的大小分類,屬于哪種三角形。并說出理由。

3、“想想做做”第1題

生獨立完成,集體訂正,并說說解題方法。

4、“想想做做”第2題

提問:為什么兩個三角形拼成一個三角形后,內(nèi)角和還是180度?

5、“想想做做”第3題

生動手折折看,填空。

提問:三角形的內(nèi)角和與三角形的大小有關(guān)系嗎?三角形越大,內(nèi)角和也越大嗎?

6、“想想做做”第5題

生獨立完成,說說不同的解題方法。

7、“想想做做”第6題

學生說說自己的想法。

8、思考題

教師拿一個大三角形,提問學生內(nèi)角和是多少?用剪刀剪成兩個三角形,提問學生內(nèi)角和是多少?為什么?再剪下一個小三角形,提問學生內(nèi)角和是多少?為什么?最后建成一個四邊形,提問學生內(nèi)角和是多少?你能推導

出四邊形的內(nèi)角和公式嗎?

(四)課堂總結(jié)

本節(jié)課我們學習了哪些內(nèi)容?(生自由說),同學們說得真好,我們要勇于從事實中尋找規(guī)律,再將規(guī)律運用到實踐當中去。

三、教后反思:

“三角形的內(nèi)角和”是小學數(shù)學教材第八冊“認識圖形”這一單元中的一個內(nèi)容。通過鉆研教材,研究學情和學法,與同組老師交流,我將本課的教學目標確定為:

1、通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180度。

2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

本節(jié)教學是在學生在學習“認識三角形”的基礎(chǔ)上進行的,“三角形內(nèi)角和等于180度”這一結(jié)論學生早知曉,但為什么三角形內(nèi)角和會一樣?這也正是本節(jié)課要與學生共同研究的問題。所以我將這節(jié)課教學的重難點設(shè)定為:通過動手操作驗證三角形的內(nèi)角和是180°。教學方法主要采用了實驗法和演示法。學生的折、拼、剪等實踐活動,讓學生找到了自己的驗證方法,使他們體驗了成功,也學會了學習。下面結(jié)合自己的教學,談幾點體會。

(一)創(chuàng)設(shè)情景,激發(fā)興趣

俗話說:“良好的開端是成功的一半”。一堂課的開頭雖然只有短短幾分鐘,但它卻往往影響一堂課的成敗。因此,教師必須根據(jù)教學內(nèi)容和學生實際,精心設(shè)計每一節(jié)課的開頭導語,用別出心裁的導語來激發(fā)學生的學習興趣,讓學生主動地投入學習。本節(jié)課先創(chuàng)設(shè)畫角質(zhì)疑的情景,當學生畫不出來含有兩個直角的三角形時,學生想說為什么又不知怎么說,學生探究的興趣因此而油然而生。

(二)給學生空間,讓他們自主探究

“給學生一些權(quán)利,讓他們自己選擇;給學生一個條件,讓他們自己去鍛煉;給學生一些問題,讓他們自己去探索;給學生一片空間,讓他們自己飛翔?!蔽矣洸磺暹@是誰說過的話,但它給我留下深刻的印象。它正是新課改中學生主體性的表現(xiàn),是以人為本新理念的體現(xiàn)。所以在本節(jié)課中我注重創(chuàng)設(shè)有助于學生自主探究的機會,通過“想辦法驗證三角形內(nèi)角和是180度”這一核心問題,引發(fā)學生去思考、去探究。我讓他們將課前準備好的三角形拿出來進行研究,學生通過折一折、拼一拼、剪一剪等活動找到自己的驗證方法。學生拿著他們手中的三角形,在講臺上講述自己的驗證方法,雖然有的方法很不成熟,但也可以看出這個過程中,滲透了他們發(fā)現(xiàn)的樂趣。這樣,學生在經(jīng)歷“再創(chuàng)造”的過程中,完成了對新知識的構(gòu)建和創(chuàng)造。

(三)以學定教,注重教學的有效性

新課表指出:數(shù)學教學活動必須建立在學生的認知發(fā)展水平和已有的知識經(jīng)驗基礎(chǔ)之上。要把學生的個人知識、直接經(jīng)驗和現(xiàn)實世界作為數(shù)學教學的重要資源,即以學定教,注重每個教學環(huán)節(jié)的有效性。本課中當我提出“為什么一個三角形中不能有兩個角是直角”時,有學生指出如果有兩個直角,它就拼不成了一個三角形;也有學生說如果有兩個直角,它就趨向于長方形或正方形?!盀槭裁磿@樣呢”?學生沉默片刻后,忽然有個學生舉手了:“因為三角形的內(nèi)角和是180度,兩個直角已經(jīng)有180度了,所以不可能有兩個角是直角?!边@樣的回答把本來設(shè)計的教學環(huán)節(jié)打亂了,此時我靈機把問題拋給學生,“你們理解他說的話嗎、你怎么知道內(nèi)角和是180度、誰都知道三角形的內(nèi)角和是180度”等,當我看到大多數(shù)的已經(jīng)知道這一知識時,我就把學生直接引向主題“想不想自己研究證明一下三角形的內(nèi)角和是不是180度?!奔ぐl(fā)了學生探究的興趣,使學生馬上投入到探究之中。

三角形內(nèi)角和教學教案設(shè)計 篇3

【教學內(nèi)容】

新課標人教版四年級下冊第五單元《三角形》

【教材分析】

“三角形內(nèi)角和”這節(jié)課是新課標人教版四年級下冊第五單元的教學內(nèi)容,是在學生學習了三角形的概念及特征之后進行的。教材先給出了量這一思路,繼而讓學生探索驗證三角形內(nèi)角和是180度這一觀點。在活動過程中,先通過“畫一畫、量一量”,產(chǎn)生初步的發(fā)現(xiàn)和猜想,再“拼一拼、折一折”,引導學生對已有猜想進行驗證,經(jīng)歷提出猜想——進行驗證的的過程,滲透數(shù)學學習方法和思想。

【學生分析】

學生已經(jīng)掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數(shù)學生已經(jīng)在課前通過不同的途徑知道“三角形的內(nèi)角和是180度”的結(jié)論,但不一定清楚道理,所以本課的設(shè)計意圖不在于了解,而在于驗證,讓學生在課堂上經(jīng)歷研究問題的過程是本節(jié)課的重點。四年級的學生已經(jīng)初步具備了動手操作的意識和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經(jīng)驗,通過交流、比較、評價尋找解決問題的途徑和策略。

【學習目標】

1.學生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于180度”的規(guī)律。

2.在探究過程中,經(jīng)歷知識產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。

3.體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。

【教學過程】

一、創(chuàng)設(shè)情境,發(fā)現(xiàn)問題

1、魔術(shù)導入:把長方形的紙剪兩刀,怎樣拼成一個三角形?

2、你知道三角形的那些知識?(復習)

3、小游戲:猜一猜藏在信封后面的是什么三角形。

師:我們在猜三角形的時候,看到一個直角,就能斷定它一定是直角三角形;看到一個鈍角,就能斷定他一定是鈍角三角形;但只看到一個銳角,就判斷不出來是哪種三角形??磥碓谝粋€三角形中,只能有一個直角或一個鈍角,為什么畫不出有兩個直角或兩個鈍角的三角形呢?

三角形的這三個角究竟存在什么奧秘呢,我們一起來研究研究。

(創(chuàng)設(shè)的不是生活中的情境,而是數(shù)學化的情境。有的孩子認為一個三角形中可能會有兩個鈍角,還有的提出等邊三角形中可能會有直角,這兩個問題顯現(xiàn)出學生在認知上的矛盾,學生用已經(jīng)學的三角形的特征只能解釋“不能是這樣”,而不能解釋“為什么不能是這樣”。這樣引入問題恰好可以利用學生的這種認知沖突,激發(fā)學生的學習興趣。)

二、引導探究,解決問題

1.介紹內(nèi)角、內(nèi)角和

師:我們現(xiàn)在研究三角形的三個角,都是它的內(nèi)角,以后到了初中,還會接觸三角形的外角。看老師手里的三角形,關(guān)于它的三個內(nèi)角,除了我們已經(jīng)掌握的知識外,你還知道哪方面的知識?誰能說一說三角形的內(nèi)角和指的是什么?

已經(jīng)知道三角形的內(nèi)角和是多少的同學,可以把它寫在本上。不知道的同學想一想,計量內(nèi)角和的單位是度,可以估計一下,各種各樣的三角形的內(nèi)角和是不是一個固定的數(shù),有可能會是多少度,把你的猜想也寫在本上。

我們這節(jié)課就來一起探究用哪些方法能知道三角形的內(nèi)角和。

2.確定研究范圍(預設(shè)約3-5分)

師:研究三角形的內(nèi)角和,是不是應該包括所有的三角形?只研究黑板上這一個行不行?那就隨便畫,挨個研究吧。(學生反對)

請你想個辦法吧!

(通過引導學生分析,“研究哪幾類三角形,就能代表所有的三角形”這個問題,來滲透研究問題要全面,也就是完全歸納法的數(shù)學思想)

3.動手操作實踐(預設(shè)約8-10分)

同桌組成學習小組,拿出課前制作的各種各樣的三角形,先找到三個內(nèi)角,把每個角標上序號。老師提出要求:先試著研究自己的三角形,然后再共同研究小組里其他同學的三角形,看看各種三角形內(nèi)角和是不是一樣的。(學生動手操作試驗,在小組中討論問題)

(為了滿足學生的探究欲望,發(fā)揮學生的主觀能動性,我在設(shè)計學具的時候,想了幾個不同的方案,最后決定課前讓學生在學習小組里分工合作制作各種不同的三角形,課上就讓學生就用自己制作的三角形,通過獨立探究和組內(nèi)交流,實現(xiàn)對多種方法的體驗和感悟。)

4.匯報交流(預設(shè)約15-20分)

(1)測量的方法

學生匯報量的方法,師請同學評價這種方法。

師小結(jié):直接量的方法挺好,雖然測量有誤差,不準,但我們能知道,三角形的內(nèi)角和只能在180°左右,究竟是不是一定就是180度呢,誰還有別的方法?

(2)剪拼的方法

學生匯報后師小結(jié):能想到這個方法不簡單,拼成的看起來像平角,到底是不是平角呢,我們一起來試試看。(教師和學生剪一剪、拼一拼)

師:把三角形的三個內(nèi)角湊到了一起,拼成了一個大角,角的兩條邊是不是在一條直線上呢?看起來挺象的,但在操作的過程中難免會產(chǎn)生誤差,有時會差一點點,誰還有別的方法確定三角形的內(nèi)角和一定是180°?

(3)折拼的方法

學生匯報后師小結(jié):我們要研究三角形的內(nèi)角和,實際上就是想辦法把三角形的三個內(nèi)角湊到一起,像剪和折的方法,看三個內(nèi)角拼到一起是不是180度,都是借助我們學過的平角解決的問題。

這三種方法都不錯,在操作的過程中,有時會有誤差,不太有說服力。想一想,你還能不能借助我們學過的哪種圖形,想辦法說明三角形的內(nèi)角和一定是180度?

(4)演繹推理的方法

(借助學過的長方形,把一個長方形沿對角線分成兩個三角形。)

師:你認為這種方法好不好?我們看看是不是這么回事。

師小結(jié):這種方法避免了在剪拼過程中由于操作出現(xiàn)的誤差,非常準確的說明了三角形的內(nèi)角和一定是180度。

(學生通過小組合作的方式學到方法,分享經(jīng)驗,更重要的是領(lǐng)悟到科學研究問題的方法。就學生的發(fā)展而言,探究的過程比探究獲得的結(jié)論更有價值。)

學生用的方法會非常多,怎樣對這些方法進行引導,是值得思考的問題。這些方法的思維水平不應該是平行的:直接測量的方法是學生利用已有的知識,測量出每個角的度數(shù),再用加法求和;拼角求和法,也就是間接剪拼和折拼這兩種方法,都是通過拼成一個特殊角,也就是平角來解決問題;而演繹推理,即把兩個完全相同的三角形合二為一,或把長方形一分為二,成為兩個三角形,這是更深層次的思考,是一種批判的思維。前兩種方法是不完全歸納法,能使我們確定研究的范圍只能是180度左右,而不可能是其他任意猜想的度數(shù)。最后一種方法具有演繹推理的色彩,把一個長方形沿對角線分成兩個完全相同的三角形后,因為兩個三角形的內(nèi)角和是原來長方形的四個內(nèi)角之和360度,所以一個三角形的內(nèi)角和就是360°÷2=180°,這種方法從科學證明的角度闡述了三角形的內(nèi)角和,它有嚴密性和精確性。基于以上的想法,我覺得在課上不能停留在學生對方法的描述上,而應引導學生經(jīng)歷從直觀到抽象、思維程度從低到高的過程,感悟數(shù)學的嚴謹性。所以在最后一個環(huán)節(jié)中,教師向全班同學推薦這種分的方法,大家一起來做一做,不要求全體都掌握,就想起到引導和點撥的作用。學生在經(jīng)歷量和拼之后,逐漸會在思維發(fā)散的過程中得到集中,集中為分的方法,最后將四邊形一分為二,五邊形一分為三,六邊形一分為四……,又會發(fā)現(xiàn)一些新的規(guī)律?!?/p>

5.驗證猜想

請學生把剛才研究的三角形舉起來,分別是銳角三角形、直角三角形、鈍角三角形,這三類的三角形內(nèi)角和都是180度,那就可以說,所有的三角形的內(nèi)角和都是180度。

這個結(jié)論和課前剛才知道的或猜的一樣嗎?

(在很多同學都知道三角形內(nèi)角和的情況下,要引導學生領(lǐng)悟有了猜測還要去驗證,這是一種科學的研究問題的方法,是一種求實精神。)

6.解釋課前問題

用內(nèi)角和的知識解釋課前的問題,為什么在三角形中不能有兩個直角或鈍角。

三、拓展應用,深化創(chuàng)新

1.介紹科學家帕斯卡(出示帕斯卡的資料)

師:帕斯卡為科學作出了巨大的貢獻,在我們以后學習的知識中,也有很多是帕斯卡發(fā)現(xiàn)和驗證的,他12歲就發(fā)現(xiàn)三角形內(nèi)角和是180度,我們同學還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。

2.四邊形內(nèi)角和及多邊形內(nèi)角和(幻燈片)

你打算用哪種方法知道四邊形的內(nèi)角和?

你覺得哪種方法更好?

(設(shè)計求四邊形的內(nèi)角和,是把這個新問題轉(zhuǎn)化歸結(jié)為求幾個三角形內(nèi)角和的問題上,滲透化歸的數(shù)學學習方法。)

3.總結(jié)

我們把四邊形一分為二,用三角形內(nèi)角和的知識知道了四邊形內(nèi)角和,那么五邊形、六邊形……這些多邊形的內(nèi)角和是多少度?有沒有什么規(guī)律可循,希望同學們能用學到的知識和方法去探究問題,你還會有一些精彩的發(fā)現(xiàn)。

三角形內(nèi)角和教學教案設(shè)計 篇4

教學目標:

1、通過測量一量、拼一拼、折一折三個活動,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°。

2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

3、經(jīng)歷三角形內(nèi)角和的研究方法,感受數(shù)學研究方法。

教學重點:

1、探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°。

2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

教學難點:掌握探究方法(猜想-驗證-歸納總結(jié)),學會用“轉(zhuǎn)化”的數(shù)學思想探究三角形內(nèi)角和。

教學用具:表格、課件。

學具準備:各種三角形、剪刀、量角器。

一、創(chuàng)設(shè)情境揭示課題。

1、一天兩個三角形發(fā)生了爭執(zhí),他們請你們來評評理。大三角形說:“我的個頭大,所以我的內(nèi)角和一定比你大?!毙∪切魏懿桓市牡卣f:“我有一個鈍角,我的內(nèi)角和一定比你大?!?。誰說得有道理呢?今天讓我們來做一回裁判吧。

生1:大三角形大(個子大)

生2:小三角形大(有鈍角)

(教師不做判斷,讓學生帶著問題進入新課)

2、什么是三角形的內(nèi)角和?(板書:內(nèi)角和)

講解:三角形內(nèi)兩條邊所夾的角就叫做這個三角形的內(nèi)角。每個三角形都有三個內(nèi)角,這三個內(nèi)角的度數(shù)加起來就是三角形的內(nèi)角和。

二、自主探究,合作交流。

(一)提出問題:

1、你認為誰說得對?你是怎么想的?

2、你有什么辦法可以比較一下這兩個三角形的內(nèi)角和呢?

生1:用量角器量一量三個內(nèi)角各是多少度,把它們加起來,再比較。

生2:用拼一拼的辦法把三個角拼到一起看它們能不能組成平角。

生3:用折一折的辦法把三個角折到一起看它們能不能組成平角

(二)探索與發(fā)現(xiàn)

活動一:量一量

(1)①了解活動要求:(屏幕顯示)

A、在練習本上畫一個三角形,量一量三角形三個內(nèi)角的度數(shù)并標注。(測量時要認真,力求準確)

B、把測量結(jié)果記錄在表格中,并計算三角形內(nèi)角和。

C、討論:從剛才的測量和計算結(jié)果中,你發(fā)現(xiàn)了什么?

(引導生回顧活動要求)

②小組合作。

③匯報交流。

你們測量了幾個三角形?它們的內(nèi)角和分別是多少?從測量和計算結(jié)果中你們發(fā)現(xiàn)了什么?

(引導學生發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180°,左右。)

(2)提出猜想

剛才我們通過測量和計算發(fā)現(xiàn)了三角形內(nèi)角和都在180度左右,那你能不能大膽的猜測一下:三角形內(nèi)角和是否相等?三角形的內(nèi)角和等于多少度呢?(板書:猜測)

活動二:拼一拼,驗證猜想

這個猜想是否成立呢?我們要想辦法來驗證一下。(板書驗證)

引導:180°,跟我們學過的什么角有關(guān)?我們課前準備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個內(nèi)角轉(zhuǎn)換成一個平角呢?

(1)小組合作,討論驗證方法。(把三個角撕下來,拼在一起,3個角拼成了一個平角,所以三角形內(nèi)角和就是180°)。

(2)討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結(jié)論呢?

(3)分組匯報,討論質(zhì)疑

(4)課件演示,驗證結(jié)果

活動三:折一折

師生一起活動,教師先讓學生看課件演示,然后拿出準備好的三角形紙艮老師一起折一折。

(把三角形的角1折向它的對邊,使頂點落在對邊上,然后另外兩個角相向?qū)φ?,使它們的頂點與角1的頂點互相重合,也證明了三角形內(nèi)角和等于180°,)。

討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結(jié)論?

提問:還有沒有其它的方法?

3、回顧兩種方法,歸納總結(jié),得出結(jié)論。

(1)引導學生得出結(jié)論。

孩子們,三角形內(nèi)角和到底等于多少度呢?”

學生答:“180°!”

(2)總結(jié)方法,齊讀結(jié)論

我們通過動作操作,折一折,拼一拼,把三角形的三個內(nèi)角轉(zhuǎn)換成了一個平角,成功的得到了這個結(jié)論,讓我們?yōu)樽约旱某晒恼?!齊讀結(jié)論。(板書:得到結(jié)論)

(3)解釋測量誤差

為什么我們剛才通過測量,計算出來的三角形內(nèi)角和不是180°,呢?

那是因為我們在測量時,由于測量工具、測量操作等各方面的原因,使我們的測量結(jié)果存在一定的誤差。實際上,三角形內(nèi)角和就等于180°

(三)回顧問題:

現(xiàn)在你知道這兩個三角形誰說得對了嗎?(都不對?。?/p>

為什么?請大家一起,自信肯定的告訴我。

生:因為三角形內(nèi)角和等于1800180°。(齊讀)

三、鞏固深化,加深理解。

1、試一試:數(shù)學書28頁第3題

∠A=180°-90°-30°

2、練一練:數(shù)學書29頁第一題(生獨立解決)

∠A=180°-75°-28°

3、小法官:數(shù)學書29頁第二題

四、回顧課堂,滲透數(shù)學方法。

1、總結(jié):猜想—驗證—歸納—應用的數(shù)學方法。

2、介紹:三角形內(nèi)角和等于180度這個結(jié)論的由來;數(shù)學領(lǐng)域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。

3、課堂延伸活動:探索——多邊形內(nèi)角和

板書設(shè)計:

探索與發(fā)現(xiàn)(一)

三角形內(nèi)角和等于180°

三角形內(nèi)角和教學教案設(shè)計 篇5

設(shè)計思路

本節(jié)課我先引導學生任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測量誤差),再引導學生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個平角。再引導學生通過折角的方法也發(fā)現(xiàn)這個結(jié)論,由此獲得三角形的內(nèi)角和是180°的結(jié)論。概念的形成沒有直接給出結(jié)論,而是通過量、算、拼、折等活動,讓學生探索、實驗、發(fā)現(xiàn)、推理歸納出三角形的內(nèi)角和是180°。

最后讓學生運用結(jié)論解決實際問題,練習的安排上,注意練習層次性和趣味性,還設(shè)計了開放性的練習,由一個同學出題,其它同學回答。先給出三角形兩個內(nèi)角的度數(shù),說出另外一個內(nèi)角,有唯一的答案。給出三角形一個內(nèi)角,說出其它兩個內(nèi)角,答案不唯一,可以得出無數(shù)個答案。讓學生在游戲中拓展學生思維。

教學目標

1、讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。

2、讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透“轉(zhuǎn)化”數(shù)學思想。

3、使學生體驗成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。

教學重點

讓學生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應用的全過程。

教學準備

教具:多媒體課件、用彩色卡紙剪的相同的兩個直角三角形、一個鈍角三角形、一個銳角三角形。

學具:三角形

教學過程

一、引入

(一)認識三角形的內(nèi)角及三角形的內(nèi)角和

師:我們已經(jīng)學習了三角形的分類,誰能說說老師手上的是什么三角形?

師:今天我們來學習新的知識《三角形內(nèi)角和》,誰能說說哪些角是三角形的內(nèi)角?(讓學生邊說邊指出來)

師:那三角形的內(nèi)角和又是什么意思?(把三角形三個內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。)

(二)設(shè)疑,激發(fā)學生探究新知的心理

師:請同學們幫老師畫一個三角形,能做到嗎?(激發(fā)學生主動學習的心理)

生:能。

師:請聽要求,畫一個有兩個內(nèi)角是直角的三角形,開始。(設(shè)置矛盾,使學生在矛盾中去發(fā)現(xiàn)問題、探究問題。)

師:有誰畫出來啦?

生1:不能畫。

生2:只能畫兩個直角。

生3:……

師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?那就讓我們一起來研究吧!

(揭示矛盾,巧妙引入新知的探究)

二、動手操作,探究三角形內(nèi)角和

(一)猜一猜。

師:猜一猜三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。

生1:180°。

生2:不一定。

……

(二)操作、驗證三角形內(nèi)角和是180°。

1、量一量三角形的.內(nèi)角

動手量一量自己手中的三角形的內(nèi)角度數(shù)。

師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?

生:可以先量出每個內(nèi)角的度數(shù),再加起來。

師:哦,也就是測量計算,是嗎?

學生匯報結(jié)果。

師:請匯報自己測量的結(jié)果。

生1:180°。

生2:175°。

生3:182°。

……

2、拼一拼三角形的內(nèi)角

學生操作

師:沒有得到統(tǒng)一的結(jié)果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?

生1:有。

生2:用拼合的辦法,就是把三角形的三個內(nèi)角放在一起,可以拼成一個平角。

師:怎樣才能把三個內(nèi)角放在一起呢?(學生操作)

生:把它們剪下來放在一起。

師:很好。

匯報驗證結(jié)果。

師:通過拼合我們得出什么結(jié)論?

生1:銳角三角形的內(nèi)角拼在一起是一個平角,所以銳角三角形的內(nèi)角和是180°。

生2:直角三角形的內(nèi)角和也是180°。

生3:鈍角三角形的內(nèi)角和還是180°。

課件演示驗證結(jié)果。

師:請看屏幕,老師也來驗證一下,是不是跟你們得到的結(jié)果一樣?(播放課件)

師:我們可以得出一個怎樣的結(jié)論?

生:三角形的內(nèi)角和是180°。

(教師板書:三角形的內(nèi)角和是180°學生齊讀一遍。)

師:為什么用測量計算的方法不能得到統(tǒng)一的結(jié)果呢?

生1:量的不準。

生2:有的量角器有誤差。

師:對,這就是測量的誤差。

3、折一折三角形的內(nèi)角

師:除了量、拼的方法,還有沒有別的方法可以驗證三角形的內(nèi)角和是180°。

如果學生說不出來,教師便提示或示范。

學生操作

4、小結(jié):三角形的內(nèi)角和是180°。

三、解決疑問。

師:現(xiàn)在誰能說說不能畫出有兩個直角的一個三角形的原因?(讓學生體驗成功的喜悅)

生:因為三角形的內(nèi)角和是180°,在一個三角形中如果有兩個直角,它的內(nèi)角和就大于180°。

師:在一個三角形中,有沒有可能有兩個鈍角呢?

生:不可能。

師:為什么?

生:因為兩個銳角和已經(jīng)超過了180°。

師:那有沒有可能有兩個銳角呢?

生:有,在一個三角形中最少有兩個內(nèi)角是銳角。

四、應用三角形的內(nèi)角和解決問題。

1、下面說法是否正確。

鈍角三角形的內(nèi)角和一定大于銳角三角形的內(nèi)角和。()

在直角三角形中,兩個銳角的和等于90度。()

在鈍角三角形中兩個銳角的和大于90度。()

④一個三角形中不可能有兩個鈍角。()

⑤三角形中有一個銳角是60度,那么這個三角形一定是個銳角三角形。()

2、看圖求出未知角的度數(shù)。(知識的直接運用,數(shù)學信息很淺顯)

3、游戲鞏固。

由一個同學出題,其它同學回答。

(1)給出三角形兩個內(nèi)角,說出另外一個內(nèi)角(有唯一的答案)。

(2)給出三角形一個內(nèi)角,說出其它兩個內(nèi)角(答案不唯一,可以得出無數(shù)個答案)。

4、根據(jù)所學的知識算出四邊形、正五邊形、正六邊形的內(nèi)角和。

五、全課總結(jié)。

今天你學到了哪些知識?是怎樣獲取這些知識的?你感覺學得怎么樣?

反思:

在本節(jié)課的學習活動過程中,先讓學生進行測量、計算,但得不到統(tǒng)一的結(jié)果,再引導學生用把三個角拼在一起得到一個平角進行驗證。這時,有部分學生在拼湊的過程中出現(xiàn)了困難,花費的時間較長,在這里用課件再演示一遍正好解決了這個問題。再引導學生用折三角形的方法也能驗證三角形的內(nèi)角和是180°。練習設(shè)計也具有許多優(yōu)點,注意到練習的梯度,并由淺入深,照顧到不同層次學生的需求,也很有趣味性。在整個教學設(shè)計中,本著“學貴在思,思源于疑”的思想,不斷創(chuàng)設(shè)問題情境,讓學生去實驗、去發(fā)現(xiàn)新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力。

但因為是借班上課,對學生了解不多,學生前面的內(nèi)容(三角形的特性和分類)還沒學好,所以有些練習學生就沒有預想的那么得心應手,如:知道等腰三角形的頂角求底角的題,學生掌握比較困難。

三角形內(nèi)角和教學教案設(shè)計 篇6

教學目標:

1、通過“算一算,拼一拼,折一折”等操作活動探索發(fā)現(xiàn)和驗證“三角形的內(nèi)角和是180度”的規(guī)律。

2、在操作活動中,培養(yǎng)學生的合作能力、動手實踐能力,發(fā)展學生的空間觀念。并運用新知識解決問題。

3、使學生有科學實驗態(tài)度,激發(fā)學生主動學習數(shù)學的興趣,體驗數(shù)學學習成功的喜悅。

教學重點:

探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”這一規(guī)律的過程,并歸納總結(jié)出規(guī)律。

教學難點:

對不同探究方法的指導和學生對規(guī)律的靈活應用。

教具學具準備:

課件、學生準備不同類型的三角形各一個,量角器。

教學過程:

一、創(chuàng)設(shè)情景,引出問題

1、課件出示三角形的爭吵畫面

銳角三角形:我的內(nèi)角和度數(shù)最大。

直角三角形:不對,是我們直角三角形的內(nèi)角和最大。

鈍角三角形:你們別吵了,還是鈍角三角形的內(nèi)角和最大。

師:此時,你想對它們說點什么呢?

2、引出課題。

師:看來三角形里角一定藏有一些奧秘,這節(jié)課我們就來研究有關(guān)三角形角的知識“三角形內(nèi)角和”。(板書課題)

二、探究新知

1、三角形的內(nèi)角、內(nèi)角和

(1)什么是三角形內(nèi)角(課件)

三角形里面的三個角都是三角形的內(nèi)角。為了方便研究,我們把每個三角形的3個內(nèi)角分別標上∠1、∠2、∠3。

(2)三角形內(nèi)角和(課件)

師:內(nèi)角和指的是什么?

生:三角形的三個內(nèi)角的度數(shù)的和,就是三角形的內(nèi)角和。

2、看一看,算一算。

師:算一算兩個三角尺的內(nèi)角和是多少度?(課件)

學生計算

師:是不是所有的三角形的內(nèi)角和都是180°呢?你能肯定嗎?

(預設(shè))師:大家意見不統(tǒng)一,我們得想個辦法驗證三角形的內(nèi)角和是多少?可以用什么方法驗證呢?

3、操作驗證:小組合作。

選1個自己喜歡的三角形,選喜歡的方法進行驗證。

(老師首先為學生提供充分的研究材料,如三種類型的三角形若干個(小組之間的三角形大小都不相同),剪刀,量角器,白紙,直尺等,以及充裕的時間,保證學生能真正地試驗,操作和探索,通過量一量、折一折、拼一拼、畫一畫等方式去探究問題。)

4、學生匯報。

(1)教師:匯報的測量結(jié)果,有的是180°,有的不是180°,為什么會出現(xiàn)這種情況?

師:有沒有別的方法驗證。

(2)剪拼

a、學生上臺演示。

B、請大家四人小組合作,用他的方法驗證其它三角形。

C、展示學生作品。

D、師展示。

(3)折拼

師:有沒有別的驗證方法?

師:我在電腦里收索到拼和折的方法,請同學們看一看他是怎么拼,怎么折的(課件演示)。

(鼓勵學生積極開動腦筋,從不同途徑探究解決問題的方法,同時給予學生足夠的時間和空間,不斷讓每個學生自己參與,而且注重讓學生在經(jīng)歷觀察、操作、分析、推理和想像活動過程中解決問題,發(fā)展空間觀念和論證推理能力。)

師:此時,你想對爭論的三個三角形說些什么呢?

5、小結(jié)。

三角形的內(nèi)角和是180度。

三、解決相關(guān)問題

1、在能組成三角形的三個角后面畫“√”(課件)

2、在一個三角形中,∠1=140°,∠3=25°,求∠2的度數(shù)。(課件)

3、一個等腰三角形的風箏,它的一個底角是70°,他的頂角是多少度?(課件)

四、練習鞏固

1、看圖,求三角形中未知角的度數(shù)。(課件)

2、求三角形各個角的度數(shù)。(課件)

五、總結(jié)。

師:這節(jié)課你有什么收獲?

六、板書設(shè)計:

三角形的內(nèi)角和是180°

三角形內(nèi)角和教學教案設(shè)計 篇7

教學要求

1、通過動手操作,使學生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。

2、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。

3、培養(yǎng)學生動手動腦及分析推理能力。

教學重點

三角形的內(nèi)角和是180°的規(guī)律。

教學難點

使學生理解三角形的內(nèi)角和是180°這一規(guī)律。

教學用具

每個學生準備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。

教學過程:

一、出示預習提綱

1、三角形按角的不同可以分成哪幾類?

2、一個平角是多少度?1個平角等于幾個直角?

3、如圖,已知∠1=35°,∠2=75°,求∠3的度數(shù)。

二、展示匯報交流

1、投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的三個內(nèi)角。(板書:內(nèi)角)

2、三角形三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。(板書課題:三角形的內(nèi)角和)今天我們一起來研究三角形的內(nèi)角和有什么規(guī)律。

3、以小組為單位先畫4個不同類型的三角形,利用手中的工具分別計算三角形三個內(nèi)角的和各是多少度?

4、指名學生匯報各組度量和計算的結(jié)果。你有什么發(fā)現(xiàn)?

5、大家算出的三角形的內(nèi)角和都接近180°,那么,三角形的內(nèi)角和與180°究竟是怎樣的關(guān)系呢?就讓我們一起來動手實驗研究,我們一定能弄清這個問題的。

6、剛才我們計算三角形的內(nèi)角和都是先測量每個角的度數(shù)再相加的。在量每個內(nèi)角度數(shù)時只要有一點誤差,內(nèi)角和就有誤差了。我們能不能換一種方法,減少度量的次數(shù)呢?

提示學生,可以把三個內(nèi)角拼成一個角,就只需測量一次了。

7、請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。

8、三個角拼在一起組成了一個什么角?我們可以得出什么結(jié)論?(直角三角形的內(nèi)角和是180°)

9、拿一個銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發(fā)現(xiàn)了什么?(直角三角形和鈍角三角形的內(nèi)角和也是180°)

10、那么,我們能不能說所有三角形的內(nèi)角和都是180°呢?為什么?(能,因為這三種三角形就包括了所有三角形)11。老師板書結(jié)論:三角形的內(nèi)角和是180°。

12、一個三角形中如果知道了兩個內(nèi)角的度數(shù),你能求出另一個角是多少度嗎?怎樣求?

13、出示教材85頁做一做。讓學生試做。

14、指名匯報怎樣列式計算的。兩種方法均可。

∠2=180°—140°—25°=15°

∠2=180°(140°+25°)=15°

課后反思:

對于三角形的內(nèi)角和,學生并不陌生,在平時的做題中已經(jīng)涉及到了??墒菍W生并不知道如何去驗證,所以本節(jié)課,重點讓孩子們經(jīng)歷體驗,感悟圖形。從而收獲了經(jīng)驗。特別是動手操作將三角形拼成一個直角時,有的孩子將角剪得非常小,很不好拼,在此進行了重點的提示。

三角形內(nèi)角和教學教案設(shè)計 篇8

【教材分析】:

新課標把三角形的內(nèi)角和作為第二學段中三角形的一個重要組成部分。本課是安排在三角形的特性及分類之后進行的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎(chǔ)。教材所呈現(xiàn)的內(nèi)容,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,安排了量一量、算一算和剪一剪、拼一拼兩個實驗操作活動,意圖使學生在動手操作、合作交流中發(fā)現(xiàn)并形成結(jié)論。

【教學目標】

知識與技能

1.理解和掌握三角形的內(nèi)角和是180度。

2.運用三角形的內(nèi)角和的知識解決實際問題。

過程與方法

經(jīng)歷三角形的內(nèi)角和的探究過程,體驗“發(fā)現(xiàn)——驗證——應用”的學習模式。

情感態(tài)度與價值觀

在學習活動中,滲透探究知識的方法,提高學生學習的能力,培養(yǎng)學生的創(chuàng)新精神和實踐能力。

【教學重點】

重點:理解和掌握三角形的內(nèi)角和是180度。

突破方法:引導學生用測量或剪拼的方法探究三角形的內(nèi)角和。合理猜想,測量驗證。

【教學難點】

用三角形的內(nèi)角和解決實際問題。

突破方法:推理分析計算。運用推理,正確計算。

教法:質(zhì)疑

【教學方法】

引導,演示講解。

學法:實踐操作,小組合作。

【教學準備】:

多媒體課件,銳角,直角,鈍角三角形的硬紙片,剪刀。

【教學時間】

一課時

【教學過程】

一.創(chuàng)設(shè)情境,引入新課

師:同學們,我們這倆天學習了三角形的分類,通過對角的分類,我們能夠分成幾類三角形?

生:三類,分別為銳角三角形,直角三角形,鈍角三角形。

師:嗯,真好,那么對邊的分類呢?

生:倆類,分別為等腰三角形,等邊三角形。

師:老師想讓同學們幫老師畫一個三角形,能做到嗎?

生:能。

師:請聽要求,畫一個有一個角是直角的三角形,開始。(學生動手操作)

師:再來一個可以嗎?請聽要求,畫一個有倆個角是直角的三角形,開始。

生:不能畫,因為當倆個角是90度的時候,倆個頂點在一條線上,不能組成封閉圖形。

師:回答的真好,那么為什么會出現(xiàn)這種情況呢?是因為三角形中的角而引起的,那么同學們想不想知道其中的秘密呢?

生:想。

師:好,那么我們今天就一起來學習“三角形的內(nèi)角和”(出示板書)

(設(shè)計意圖:通過學生的動手操作,發(fā)現(xiàn)問題所在,這樣更能調(diào)動學生的學習興趣,為了更好的學習這節(jié)課做鋪墊.)

二.探究新知

師:昨天呢,老師讓同學們一人做一個自己喜歡的三角形,請同學們拿出來,看一看你們做的是什么樣子的三角形。

生1:銳角三角形。

生2:直角三角形。

生3:鈍角三角形。

師:嗯,我們在上個星期學習了三角形的各部分名稱,誰能幫我告訴下同學們,角在哪里呢?

生:里面的三個角,可以用角1,角2,角3來表示。

師:嗯,這三個角我們也可以說成是三角形的內(nèi)角,好了,今天我們既然學習三角形的內(nèi)角和,也就是求成這三個角的度數(shù)和,你們猜一猜三角形內(nèi)角和的度數(shù)是多少呢?

生:三角形的內(nèi)角和是180度。

師:那么我們能不能一起用一些好的辦法來驗證一下呢?

生1:我們可以用量角器分別量出這三個內(nèi)角的度數(shù),然后再加在一起就可以求出三角形內(nèi)角的和了。

師:還有其他的辦法嗎?

生2:我們可以用剪子剪下三個角,然后把它們拼在一起,看看這三個角拼在一起之后能夠呈現(xiàn)出什么樣子的角。

生3:我可以用折的方法,把三個角的度數(shù)折在一起。

師:同學們說的真好,既然有這么多的方法,到底哪個方法好呢?我們一起來研究一下,我把全班分成倆個小組,一隊用量的方法,一隊用拼的方法,看看哪個小組做的又對又快,開始。

(設(shè)計意圖:通過學生的動手操作,合作交流,真正的把課堂還給學生,讓學生成為學習的主體,教師適時引導,突出學生的學習的能力與價值。)

三.總結(jié)任意三角形的內(nèi)角和是180度并做適當練習。

四.板書設(shè)計

三角形的內(nèi)角和

量一量銳角三角形:75度+48度+58度=181度

直角三角形:90度+45度+45度=180度

鈍角三角形:120度+38度+22度=180度

拼一拼圖形呈現(xiàn)

折一折圖形呈現(xiàn)

三角形內(nèi)角和教學教案設(shè)計 篇9

教學目標:

1、知識目標:通過測量、拼、折疊等方法探索和發(fā)現(xiàn)三角形的內(nèi)角和等于180°;已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

2、能力目標:通過討論爭辯、操作、推理等培養(yǎng)學生的思維能力和解決問題的能力;培養(yǎng)學生的空間觀念,使學生的創(chuàng)新能力得到發(fā)展;使學生初步掌握由特殊到一般的邏輯思辨方法和先猜想后驗證的研究問題的方法。

3、情感目標:培養(yǎng)學生的合作精神和探索精神;培養(yǎng)學生運用數(shù)學的意識。

教學重、難點:

掌握三角形的內(nèi)角和是180°。驗證三角形的內(nèi)角和是180°。

學生分析:

在上學期學生已經(jīng)掌握了角的分類及度量問題。在本課之前,學生又研究了三角形的分類。這些都為進一步研究三角形內(nèi)角和作了知識儲備和心理準備,為本課內(nèi)容的教學作了鋪墊。三角形的內(nèi)角和是三角形的一個重要性質(zhì)。它有助于理解三角形的三個內(nèi)角之間的關(guān)系,是進一步學習、研究幾何問題的基礎(chǔ)。

教學流程:

一、創(chuàng)設(shè)情境,激發(fā)興趣

(課件出示:兩個三角形爭論,大的對小的說,我的內(nèi)角和比你大。)

(學生小聲議論著,爭論著。)

師:同學們,你們能不能幫助大三角形和小三角形解決這個問題???

生:可以把這兩個三角形的內(nèi)角比一比。

生:它們不是一個角在比較,可怎么比呀?

生:我們先畫出一個大三角形,再畫一個小三角形。分別量一量這兩個三角形三個內(nèi)角的度數(shù),這樣就知道誰的內(nèi)角和大,誰的內(nèi)角和小啦。

師:那好,我們今天就來研究“三角形的內(nèi)角和”。(板書課題。)

【設(shè)計意圖:通過多媒體出示,引起學生興趣,使學生想探索大、小三角形的內(nèi)角和到底誰大?】

二、動手操作,探索新知

1、初步感知。

師讓學生分別畫出不同形狀的三角形。學生用量角器測量三角形三個內(nèi)角的度數(shù),并做著記錄,并統(tǒng)一填表格。(表格略。)

生匯報測量的結(jié)果:內(nèi)角和約等于180°。

師啟發(fā)學生發(fā)現(xiàn)三角形的內(nèi)角和180°。(師板書:三角形的內(nèi)角和是180°。)

【設(shè)計意圖:通過這種方法可以得出準確的結(jié)論,也容易被學生理解和接受。可能出現(xiàn)問題:用測量的方法得到的結(jié)果不是剛好180°。使學生明白是因為測量存在誤差的緣故。】

2、用拼角法驗證。

師:剛才同學們發(fā)現(xiàn),三角形的內(nèi)角和約等于180°,那么到底是不是這樣呢?

生:我們手里有一些三角形,可以動手拼一拼。

生:還可以剪一剪。

師:那同學們就開始吧!

(學生動手進行拼、剪、折等方法,檢驗三角形內(nèi)角和的度數(shù)。)

生:銳角三角形的內(nèi)角可以拼成一個平角。因為平角是180°,所以銳角三角形的三個內(nèi)角和是180°。

生:我把一個直角三角形的三個內(nèi)角剪下來,拼成了一個平角,所以直角三角形的三個內(nèi)角和也是180°。

生:鈍角三角形的內(nèi)角和也是180°。

(師板書:三角形的內(nèi)角和是180°。)

【設(shè)計意圖:使學生明確,因為全面研究了直角三角形、銳角三角形和鈍角三角形這三類三角形的內(nèi)角和,所以可以得出“三角形的內(nèi)角和等于180°”這一結(jié)論。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結(jié)論的統(tǒng)一,從而使學生明白獲得探究問題的方法比獲得結(jié)論更為重要。】

三、鞏固新知,拓展應用

1.出示題目:在三角形中,已知∠1=78°,∠2=44°,求∠3=的度數(shù)。

2.已知∠1、∠2、∠3是三角形的三個內(nèi)角,猜一猜下面的三角形各是什么三角形?(圖略,分別是銳角、直角、鈍角三角形。)學生猜后,教師抽去遮蓋的紙,進行驗證。

通過以上的練習使學生對三角形內(nèi)角和的應用有個初步認識,并積累解決問題的經(jīng)驗。

3.師:(出示一個大三角形)它的內(nèi)角和是多少度?

生:180 °。

師:(出示一個很小的三角形)它的內(nèi)角和是多少度?

生:180 °。

師:(把大三角形平均分成兩份。指均分后的一個小三角形)它的內(nèi)角和是多少度?(生有的答90°,有的答180°。)

師:哪個對?為什么?

生:180°對,因為它還是一個三角形。

師:每個小三角形的度數(shù)是180°,那么這樣的兩個小三角形拼成一個大三角形,內(nèi)角和是多少度?(這時學生的答案又出現(xiàn)了180°和360°兩種。)師:究竟誰對呢?(學生臉上露出疑問。經(jīng)過一番激烈的討論探究后,學生開始舉手回答。)

生:180°。因為兩個三角形拼在一起,就變成了一個三角形了,每個三角形的內(nèi)角和總是180°。

生:我發(fā)現(xiàn)兩個小三角形拼成一個大三角形,拼接在一起的兩條邊上的兩個角沒有了,比原來兩個三角形少180°,所以大三角形的內(nèi)角和還是180°,不是360°。

師:你真聰明。(課件演示。)

四、小結(jié)

師:同學們,你們今天學了“三角形的內(nèi)角和是180°”的新知識,現(xiàn)在能來幫助大、小三角形進行評判了吧?(生答能。)

師:說一說本節(jié)課的收獲。這節(jié)課你掌握了哪些知識?學會了哪些研究問題的方法?

五、探究性作業(yè)

求下面幾個多邊形的內(nèi)角和。(圖形略。)

【設(shè)計意圖:通過這樣的練習,培養(yǎng)學生思維的靈活性、多樣性,使不同層次的學生得到不同的發(fā)展,體現(xiàn)教學的層次性?!?/p>

三角形內(nèi)角和教學教案設(shè)計 篇10

【教學目標】

1、知識與技能:

(1)理解和掌握三角形的內(nèi)角和是180°。

(2)運用三角形的內(nèi)角和知識解決實際問題和拓展性問題。

2、過程與方法:

(1)通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180°。

(2)知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。

(3)發(fā)展學生動手操作、觀察比較和抽象概括的能力。

3、情感態(tài)度與價值觀:

讓學生體驗數(shù)學活動的探索樂趣,通過教學中的活動體會數(shù)學的轉(zhuǎn)化思想。

【教學重、難點】

教學重點:理解掌握三角形的內(nèi)角和是180°。

教學難點:運用三角形的內(nèi)角和知識解決實際問題。

【教具準備】

教學課件、各種三角形

【教學過程】

一、創(chuàng)設(shè)情景,引出問題

1、猜謎語:

形狀似座山,穩(wěn)定性能堅。三竿首尾連,學問不簡單。

(打一圖形名稱)

2、猜三角形

師:老師這有1個三角形,它的一部分被智慧星給遮住了,猜猜這是什么三角形?它里面會出現(xiàn)兩個直角嗎?為什么?

3、引出課題。

師:為什么不會出現(xiàn)兩個直角?今天我們就再次走進數(shù)學王國,探討三角形的內(nèi)角和的奧秘。(板書課題)

二、探究新知

1、三角形的內(nèi)角和

師:三角形內(nèi)角和指的是什么?

2、猜一猜。

師:這個三角形的內(nèi)角和是多少度?

3、驗證。

讓學生用自己喜歡的方式驗證三角形的內(nèi)角和是不是180°。

4、學生匯報。

(1)測量

師:匯報的測量結(jié)果,有的是180°,有的不是180°,為什么會出現(xiàn)這種情況?有沒有別的方法驗證?

(2)剪拼

A、學生上臺演示。

B、請大家三人小組合作,用剪拼的方法驗證其它三角形。

C、師演示。

(3)折拼

師:有沒有別的驗證方法?我在電腦里收索到折的方法,請同學們看一看他是怎么折的(課件演示)。

(4)結(jié)論:三角形的內(nèi)角和是180。

(5)數(shù)學小知識。

5、鞏固知識。

(1)解決課前問題,為什么一個三角形不可能有兩個直角?一個三角形中可以有2個鈍角嗎?

(2)把兩個小三角形拼在一起,問:大三角形的內(nèi)角和是多少度。

教師:為什么不是360°?

三、解決相關(guān)問題

師:接下來,利用三角形的內(nèi)角和我們來解決一些相關(guān)的問題吧!

1、看圖,求未知角的度數(shù)。

2、判斷。

3、如果一個都不知道,或只知道1個角,你能知道三角形各角的度數(shù)嗎?

求出下面三角形各角的度數(shù)。

(1)我三邊相等。

(2)我是等腰三角形,我的頂角是96°。

(3)我有一個銳角是40°。

4、求四邊形、五邊形內(nèi)角和。

四、總結(jié)。

師:這節(jié)課你有什么收獲?

五、板書設(shè)計:(略)

詞條內(nèi)容僅供參考,如果您需要解決具體問題
(尤其在法律、醫(yī)學等領(lǐng)域),建議您咨詢相關(guān)領(lǐng)域?qū)I(yè)人士。

推薦詞條