国产超薄丝袜足底脚交国产_少妇愉情理伦片丰满丰满_一区二区三区中文人妻制服_久久久久88色偷偷免费_色婷婷久久久swag精品

首頁 > 職業(yè)資格  > 

新初二年級下冊數(shù)學(xué)知識點

2023-08-08   來源:萬能知識網(wǎng)

人教版新初二年級下冊數(shù)學(xué)知識點


(相關(guān)資料圖)

初二下學(xué)期學(xué)習(xí)的難度增加了,知識范圍更廣,課程的內(nèi)容更加抽象,更加難以理解,應(yīng)屆畢業(yè)生考試網(wǎng)為您整理了人教版新初二年級下冊數(shù)學(xué)知識點,歡迎大家閱讀收藏。

第一章 分式

1 分式及其基本性質(zhì)

分式的分子和分母同時乘以(或除以)一個不等于零的整式,分式的只不變

2 分式的運算

(1)分式的乘除

乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母

除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。

(2) 分式的加減

加減法法則:同分母分式相加減,分母不變,把分子相加減;

異分母分式相加減,先通分,變?yōu)橥帜傅姆质?,再加減

3 整數(shù)指數(shù)冪的加減乘除法

4 分式方程及其解法

第二章 反比例函數(shù)

1 反比例函數(shù)的表達(dá)式、圖像、性質(zhì)

圖像:雙曲線

表達(dá)式:y=k/x(k不為0)

性質(zhì):兩支的增減性相同;

2 反比例函數(shù)在實際問題中的應(yīng)用

第三章 勾股定理

1 勾股定理:直角三角形的兩個直角邊的平方和等于斜邊的平方

2 勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等于第三條邊的平方,那么這個三角形是直角三角形。

第四章 四邊形

1 平行四邊形

性質(zhì):對邊相等;對角相等;對角線互相平分。

判定:兩組對邊分別相等的四邊形是平行四邊形;

兩組對角分別相等的四邊形是平行四邊形;

對角線互相平分的四邊形是平行四邊形;

一組對邊平行而且相等的四邊形是平行四邊形。

推論:三角形的中位線平行第三邊,并且等于第三邊的一半。

2 特殊的平行四邊形:矩形、菱形、正方形

(1) 矩形

性質(zhì):矩形的四個角都是直角;

矩形的對角線相等;

矩形具有平行四邊形的所有性質(zhì)

判定: 有一個角是直角的平行四邊形是矩形;

對角線相等的平行四邊形是矩形;

推論: 直角三角形斜邊的中線等于斜邊的一半。

(2) 菱形

性質(zhì):菱形的四條邊都相等;

菱形的對角線互相垂直,并且每一條對角線平分一組對角;

菱形具有平行四邊形的一切性質(zhì)

判定:有一組鄰邊相等的平行四邊形是菱形;

對角線互相垂直的平行四邊形是菱形;

四邊相等的四邊形是菱形。

(3) 正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì)。

3 梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底邊上的兩個角相等;

等腰梯形的兩條對角線相等;

同一個底上的兩個角相等的梯形是等腰梯形。

第五章 數(shù)據(jù)的分析

加權(quán)平均數(shù)、中位數(shù)、眾數(shù)、極差、方差

拓展:初中數(shù)學(xué)知識點全總結(jié)

某些數(shù)列前n項和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

知識拓展:數(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。

初中數(shù)學(xué)知識點總結(jié):平面直角坐標(biāo)系

下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

平面直角坐標(biāo)系

平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。

水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。

平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

三個規(guī)定:

①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

初中數(shù)學(xué)知識點:平面直角坐標(biāo)系的構(gòu)成

對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

平面直角坐標(biāo)系的構(gòu)成

在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。

通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

初中數(shù)學(xué)知識點:點的坐標(biāo)的性質(zhì)

下面是對數(shù)學(xué)中點的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

點的坐標(biāo)的性質(zhì)

建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。

對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點C的坐標(biāo)。

一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。

希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。

初中數(shù)學(xué)知識點:因式分解的一般步驟

關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。

因式分解的.一般步驟

如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。

初中數(shù)學(xué)知識點:因式分解

下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

因式分解

因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

因式分解要素

①結(jié)果必須是整式

②結(jié)果必須是積的形式

③結(jié)果是等式

④因式分解與整式乘法的關(guān)系:m(a+b+c)

公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

公因式確定方法

①系數(shù)是整數(shù)時取各項最大公約數(shù)。

②相同字母取最低次冪

③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

提取公因式步驟:

①確定公因式。

②確定商式

③公因式與商式寫成積的形式。

分解因式注意;

①不準(zhǔn)丟字母

②不準(zhǔn)丟常數(shù)項注意查項數(shù)

③雙重括號化成單括號

④結(jié)果按數(shù)單字母單項式多項式順序排列

⑤相同因式寫成冪的形式

⑥首項負(fù)號放括號外

⑦括號內(nèi)同類項合并。

通過上面對因式分解內(nèi)容知識的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。

詞條內(nèi)容僅供參考,如果您需要解決具體問題
(尤其在法律、醫(yī)學(xué)等領(lǐng)域),建議您咨詢相關(guān)領(lǐng)域?qū)I(yè)人士。

標(biāo)簽

坐標(biāo)系

推薦詞條