初中九年級(jí)下冊(cè)數(shù)學(xué)《直角三角形》教案-全球簡(jiǎn)訊
北師大版初中九年級(jí)下冊(cè)數(shù)學(xué)《直角三角形》教案
(資料圖)
學(xué)習(xí)目標(biāo):
1.經(jīng)歷探索直角三角形中邊角關(guān)系的過程.理解正切的意義和與現(xiàn)實(shí)生活的聯(lián)系.
2.能夠用tanA表示直角三角形中兩邊的比,表示生活中物體的傾斜程度、坡度等,外能夠用正切進(jìn)行簡(jiǎn)單的計(jì)算.
學(xué)習(xí)重點(diǎn):
1.從現(xiàn)實(shí)情境中探索直角三角形的邊角關(guān)系.
2.理解正切、傾斜程度、坡度的數(shù)學(xué)意義,密切數(shù)學(xué)與生活的聯(lián)系.
學(xué)習(xí)難點(diǎn):
理解正切的意義,并用它來(lái)表示兩邊的比.
學(xué)習(xí)方法:
引導(dǎo)—探索法. 更多免費(fèi)教案下載綠色圃中
學(xué)習(xí)過程:
一、生活中的數(shù)學(xué)問題:
1、你能比較兩個(gè)梯子哪個(gè)更陡嗎?你有哪些辦法?
2、生活問題數(shù)學(xué)化:
⑴如圖:梯子AB和EF哪個(gè)更陡?你是怎樣判斷的?
⑵以下三組中,梯子AB和EF哪個(gè)更陡?你是怎樣判斷的?
二、直角三角形的邊與角的關(guān)系(如圖,回答下列問題)
⑴Rt△AB1C1和Rt△AB2C2有什么關(guān)系?
⑵ 有什么關(guān)系?
⑶如果改變B2在梯子上的位置(如B3C3)呢?
⑷由此你得出什么結(jié)論?
三、例題:
例1、如圖是甲,乙兩個(gè)自動(dòng)扶梯,哪一個(gè)自動(dòng)扶梯比較陡?
例2、在△ABC中,∠C=90°,BC=12cm,AB=20cm,求tanA和tanB的值.
四、隨堂練習(xí):
1、如圖,△ABC是等腰直角三角形,你能根據(jù)圖中所給數(shù)據(jù)求出tanC嗎?
2、如圖,某人從山腳下的點(diǎn)A走了200m后到達(dá)山頂?shù)狞c(diǎn)B,已知點(diǎn)B到山腳的垂直距離為55m,求山的坡度.(結(jié)果精確到0.001)
3、若某人沿坡度i=3:4的"斜坡前進(jìn)10米,則他所在的位置比原來(lái)的位置升高_(dá)_______米.
4、菱形的兩條對(duì)角線分別是16和12.較長(zhǎng)的一條對(duì)角線與菱形的一邊的夾角為θ,則tanθ=______.
5、如圖,Rt△ABC是一防洪堤背水坡的橫截面圖,斜坡AB的長(zhǎng)為12 m,它的坡角為45°,為了提高該堤的防洪能力,現(xiàn)將背水坡改造成坡比為1:1.5的斜坡AD,求DB的長(zhǎng).(結(jié)果保留根號(hào))
五、課后練習(xí):
1、在Rt△ABC中,∠C=90°,AB=3,BC=1,則tanA= _______.
2、在△ABC中,AB=10,AC=8,BC=6,則tanA=_______.
3、在△ABC中,AB=AC=3,BC=4,則tanC=______.
4、在Rt△ABC中,∠C是直角,∠A、∠B、∠C的對(duì)邊分別是a、b、c,且a=24,c= 25,求tanA、tanB的值.
5、若三角形三邊的比是25:24:7,求最小角的正切值.
6、如圖,在菱形ABCD中,AE⊥BC于E,EC=1,tanB= , 求菱形的邊長(zhǎng)和四邊形AECD的周長(zhǎng).
7、已知:如圖,斜坡AB的傾斜角a,且tanα= ,現(xiàn)有一小球從坡底A處以20cm/s 的速度向坡頂B處移動(dòng),則小球以多大的速度向上升高?
8、探究:
⑴、a克糖水中有b克糖(a>b>0),則糖的質(zhì)量與糖水質(zhì)量的比為_______; 若再添加c克糖(c>0),則糖的質(zhì)量與糖水的質(zhì)量的比為________.生活常識(shí)告訴我們: 添加的糖完全溶解后,糖水會(huì)更甜,請(qǐng)根據(jù)所列式子及這個(gè)生活常識(shí)提煉出一個(gè)不等式: ____________.
⑵、我們知道山坡的坡角越大,則坡越陡,聯(lián)想到課本中的結(jié)論:tanA的值越大, 則坡越陡,我們會(huì)得到一個(gè)銳角逐漸變大時(shí),它的正切值隨著這個(gè)角的變化而變化的規(guī)律,請(qǐng)你寫出這個(gè)規(guī)律:_____________.
⑶、如圖,在Rt△ABC中,∠B=90°,AB=a,BC=b(a>b),延長(zhǎng)BA、BC,使AE=CD=c, 直線CA、DE交于點(diǎn)F,請(qǐng)運(yùn)用(2) 中得到的規(guī)律并根據(jù)以上提供的幾何模型證明你提煉出的不等式.
§1.1從梯子的傾斜程度談起(第二課時(shí))
學(xué)習(xí)目標(biāo):
1.經(jīng)歷探索直角三角形中邊角關(guān)系的過程,理解正弦和余弦的意義.
2.能夠運(yùn)用sinA、cosA表示直角三角形兩邊的比. 3.能根據(jù)直角三角形中的邊角關(guān)系,進(jìn)行簡(jiǎn)單的計(jì)算.
4.理解銳角三角函數(shù)的意義.
學(xué)習(xí)重點(diǎn):
1.理解銳角三角函數(shù)正弦、余弦的意義,并能舉例說(shuō)明.
2.能用sinA、cosA表示直角三角形兩邊的比.
3.能根據(jù)直角三角形的邊角關(guān)系,進(jìn)行簡(jiǎn)單的計(jì)算.
學(xué)習(xí)難點(diǎn):
用函數(shù)的觀點(diǎn)理解正弦、余弦和正切.
學(xué)習(xí)方法:
探索——交流法.
學(xué)習(xí)過程:
一、正弦、余弦及三角函數(shù)的定義
想一想:如圖
(1)直角三角形AB1C1和直角三角形AB2C2有什么關(guān)系?
(2)有什么關(guān)系?呢?
(3)如果改變A2在梯子A1B上的位置呢?你由此可得出什么結(jié)論?
(4)如果改變梯子A1B的傾斜角的大小呢?你由此又可得出什么結(jié)論?
請(qǐng)討論后回答.
二、由圖討論梯子的傾斜程度與sinA和cosA的關(guān)系:
三、例題:
例1、如圖,在Rt△ABC中,∠B=90°,AC=200.sinA=0.6,求BC的長(zhǎng).
例2、做一做:
如圖,在Rt△ABC中,∠C=90°,cosA= ,AC=10,AB等于多少?sinB呢?cosB、sinA呢?你還能得出類似例1的結(jié)論嗎?請(qǐng)用一般式表達(dá).
四、隨堂練習(xí):
1、在等腰三角形ABC中,AB=AC=5,BC=6,求sinB,cosB,tanB.
2、在△ABC中,∠C=90°,sinA= ,BC=20,求△ABC的周長(zhǎng)和面積.
3、在△ABC中.∠C=90°,若tanA=
詞條內(nèi)容僅供參考,如果您需要解決具體問題
(尤其在法律、醫(yī)學(xué)等領(lǐng)域),建議您咨詢相關(guān)領(lǐng)域?qū)I(yè)人士。